Skip to main content
Log in

Comparing Soil Chemical and Biological Properties of Salt Affected Soils under Different Land Use Practices in Hungary and India

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

This study was conducted with the aim to assess the effect of land use on chemical properties (organic carbon; pH; electrical conductivity; available P, K, Ca, Mg, Na), microbiological properties (basal soil respiration, microbial biomass carbon, dehydrogenase activity and phosphatase activity), and physical property (moisture content) of salt-affected soils developed under different geographical locations and climate i.e. Hungary and India. In Hungary, soil samples were taken from two different soil types with different land uses such as arable land (Solonetz—HSNA) and pasture land (Solonetz—HSNP; Solonchak—HSCP) while in India samples were collected from Solonetz soil of different land uses, namely, arable (ISNA), pasture (ISNP) and bare land (ISNB). Based on chemical properties and moisture content, one-way ANOSIM (Analysis of similarities) proved that all six sites were statistically different from each other. The results of PCA showed that soil samples from Hungary and India must be separated unambiguously from each other; furthermore the Hungarian ones differing in soil type and land use could be also differentiated. Cluster analysis (Bray-Curtis) gave similar results for microbiological properties in Hungarian sites while in Indian sites, three land use practices were grouped into two clusters where the pasture land was grouped to both arable land and bare land. CCA results revealed that more than 86% of variation in microbiological properties were explained by the environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Alhameid, J. Singh, U. Sekaran, S. Kumar, and S. Singh, “Soil biological health: influence of crop rotational diversity and tillage on soil microbial properties,” Soil Sci. Soc. Am. J. 83 (5), 1431–1442 (2019). https://doi.org/10.2136/sssaj2018.03.0125

    Article  Google Scholar 

  2. L. Batra and M. C. Manna, “Dehydrogenase activity and microbial biomass carbon in salt-affected soils of semiarid and arid regions,” Arid Soil Res. Rehabil. 11 (3), 295–303 (1997). https://doi.org/10.1080/15324989709381481

    Article  Google Scholar 

  3. E. M. Bridges and L. R. Oldeman, “Global assessment of human-induced soil degradation,” Arid Soil Res. Rehabil. 13, 319–325 (1999). https://doi.org/10.1080/089030699263212

    Article  Google Scholar 

  4. P. C. Brookes, A. Landman, G. Pruden, and D. S. Jenkinson, “Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method for measuring microbial biomass nitrogen in soil,” Soil Biol. Biochem. 17, 837–842 (1985). https://doi.org/10.1016/0038-0717(85)90144-0

    Article  Google Scholar 

  5. I. Buzás, Manual of Soil and Agrochemical Analysis, Vol. 2: Physical, Water Management and Mineralogical Analysis of the Soil (Budapest, 1988) [in Hungarian].

    Google Scholar 

  6. M. R. Carter, Soil Sampling and Methods of Analysis (CRC Press, Boca Raton, FL, 1993).

    Google Scholar 

  7. M. R. Carter and P. R. Pearen, P.R., “Amelioration of a saline-sodic soil with low applications of calcium and nitrogen amendments,” Arid Soil Res. Rehabil. 3 (1), 1–9 (1989). https://doi.org/10.1080/15324988909381184

    Article  Google Scholar 

  8. L. E. Casida, D. A. Klein Jr., and T. Santoro, “Soil dehydrogenase activity,” Soil Sci. 98, 371–376 (1964).

    Article  Google Scholar 

  9. Climate Change Impact on Salt-Affected Soils and Their Crop Productivity: CSSRI/Karnal/Technical Manual/2013/4, Ed. by S. K. Chaudhari, A. R. Chinchmalatpure, and D. K. Sharma (Central Soil Salinity Research Institute, Karnal, 2019). https://krishikosh. egranth.ac.in/displaybitstream?handle=1/2046487.

  10. M. R. Chaudhary, K. Naresh, Vivek, D. K. Sachan, Rehan, N. C. Mahajan, L. Jat, R. Tiwari, and A. Yadav, “Soil organic carbon fractions, soil microbial biomass carbon, and enzyme activities impacted by crop rotational diversity and conservation tillage in North West IGP: a review,” Int. J. Curr. Microbiol. Appl. Sci. 7 (11), 3573–3600 (2018). https://doi.org/10.20546/ijcmas.2018.711.410

    Article  Google Scholar 

  11. H. Chen, S. Marhan, N. Billen, and K. Stahl, “Soil organic carbon and total nitrogen stocks as affected by different land uses in Baden-Württemberg (southwest Germany),” J. Plant Nutr. Soil Sci. 172 (1), 32–42 (2009). https://doi.org/10.1002/jpln.200700116

    Article  Google Scholar 

  12. F. Cheng, X. Peng, P. Zhao, J. Yuan, C. Zhong, Y. Cheng, C. Cui, and S. Zhang, “Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains,” PLoS One 8 (6), e67353 (2013). https://doi.org/10.1371/journal.pone.0067353

    Article  Google Scholar 

  13. Vision-2050 (Central Soil Salinity Research Institute, Karnal, 2015).

  14. R. C. Dalal, B. P. Harms, E. Krull, and W. J. Wang, “Total soil organic matter and its labile pools following mulga (Acacia aneura) clearing for pasture development and cropping 1. Total and labile carbon,” Aust. J. Soil Res. 43 (1), 13–20 (2005). https://doi.org/10.1071/SR04044

    Article  Google Scholar 

  15. R. C. Dalal, M. C. Thornton, and B. A. Cowie, “Turnover of organic carbon and nitrogen in soil assessed from δ13C and δ15N changes under pasture and cropping practices and estimates of greenhouse gas emissions,” Sci. Total Environ. 465, 26–35 (2013). https://doi.org/10.1016/j.scitotenv.2013.04.101

    Article  Google Scholar 

  16. H. Egner, H. Riehm, and W. Domingo, “Untersuchungen uber die chemische Bodenanalyse als Grundlage fur die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung,” K. Lantbruksstyr. Ann. 26, 199–215.

  17. N. K. Fageria, H. R. Gheyi, and A. Moreira, “Nutrient bioavailability in salt-affected soil,” J. Plant Nutr. 34 (7), 945–962 (2011). https://doi.org/10.1080/01904167.2011.555578

    Article  Google Scholar 

  18. Guidelines for Soil Description, 4th ed. (UN Food and Agriculture Organization, Rome, 2006).

  19. A. C. Câmara Ferreira, L. F. Carvalho Leite, A. S. Ferreira de Araújo, and N. Eisenhauer, “Land-use type effects on soil organic carbon and microbial properties in a semi-arid region of northeast Brazil,” Land Degrad. Dev. 27 (2), 171–178 (2016). https://doi.org/10.1002/ldr.2282

    Article  Google Scholar 

  20. A. J. Franzluebbers, F. M. Hons, and D. A. Zuberer, “Tillage and crop effect on seasonal dynamics of soil CO2 evolution, water content, temperature, and bulk density,” Appl. Soil Ecol. 2, 95–109 (1995). https://doi.org/10.1016/0929-1393(94)00044-8

    Article  Google Scholar 

  21. A. K. Gelaw, B. R. Singh, and R. Lal, “Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia,” Agric. Ecosyst. Environ. 188, 256–263 (2014). https://doi.org/10.1016/j.agee.2014.02.035

    Article  Google Scholar 

  22. S. R. Grattan and C. M. Grieve, “Salinity–mineral nutrient relations in horticultural crops,” Sci. Hortic. (Amsterdam) 78, 127–157 (1998). https://doi.org/10.1016/S0304-4238(98)00192-7

    Article  Google Scholar 

  23. L. B. Guo and R. M. Gifford, “Soil carbon stocks and land use change: a meta analysis,” Glob. Change Biol. 8 (4), 345–360 (2002). https://doi.org/10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  24. T. J. Hatton, J. Ruprecht, and R. J. George, “Preclearing hydrology of the Western Australia wheatbelt: target for the future?” Plant Soil 257 (2), 341–356 (2003). https://doi.org/10.1023/A:1027310511299

    Article  Google Scholar 

  25. P. Hinsinger, C. Plassard, C. Tang, and B. Jaillard, “Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review,” Plant Soil 248 (1), 43–59 (2003). https://doi.org/10.1023/A:1022371130939

    Article  Google Scholar 

  26. R. A. Houghton, “How well do we know the flux of CO2 from land use change?” Tellus B 62, 337–351 (2010). https://doi.org/10.1111/j.1600-0889.2010.00473.x

    Article  Google Scholar 

  27. P. Iovieno and E. Bååth, “Effect of drying and rewetting on bacterial growth rates in soil,” FEMS Microbiol. Ecol. 65, 400–407 (2008). https://doi.org/10.1111/j.1574-6941.2008.00524.x

    Article  Google Scholar 

  28. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  29. C. B. Iwai, A. N. Oo, and B. Topark-ngarm, “Soil property and microbial activity in natural salt-affected soils in an alternating wet–dry tropical climate,” Geoderma 189–190, 144–152 (2012). https://doi.org/10.1016/j.geoderma.2012.05.001

    Article  Google Scholar 

  30. S. Jalili, H. Moazed, S. Boroomand Nasab, and A. A. Naseri, “Assessment of evaporation and salt accumulation in bare soil: constant shallow water table depth with saline ground water,” Sci. Res. Essays 6 (29), 6068–6074 (2011). https://doi.org/10.5897/SRE11.509

    Article  Google Scholar 

  31. F. Jassó, B. Horváth, B. Izsó, L. Király, L. Parászka, and G. Szabóné Kele, Guideline for the Large-Scale Soil Mapping of Hungary (Agroinform, Budapest, 1989) [in Hungarian].

    Google Scholar 

  32. A. C. Kennedy and R. I. Papendick, “Microbial characteristics of soil quality,” J. Soil Water Conserv. 50 (3), 243–248 (1995).

    Google Scholar 

  33. R. Lal, R. F. Follett, J. M. Kimble, and C. V. Cole, “Managing US crop land to sequester carbon in soil”. J. Soil Water Conserv. 54 (1), 374–381 (1999).

    Google Scholar 

  34. H. Lambers, “Dryland salinity: a key environmental issue in southern Australia,” Plant Soil 257, 5–7 (2003).

    Article  Google Scholar 

  35. J. Lemanowicz and A. Bartkowiak, “Changes in the activity of phosphatase and the content of phosphorus in salt-affected soils grassland habitat Natura 2000,” Pol. J. Soil Sci. 49 (2), 149–165 (2016). https://doi.org/10.17951/pjss.2016.49.2.149

    Article  Google Scholar 

  36. A. K. Mandal, R. C. Sharma, and G. Singh, “Assessment of salt affected soils in India using GIS,” Geocarto Int. 24 (6), 437–456 (2009). https://doi.org/10.1080/10106040902781002

    Article  Google Scholar 

  37. S. Mandal, R. Raju, A. Kumar, P. Kumar, and P. Sharma, “Current status of research, technology response and policy needs of salt-affected soils in India: a review,” J. Indian Soc. Coastal Agric. Res. 36 (2), 40–53 (2018).

    Google Scholar 

  38. A. Mehlich, Determination of P, Ca, Mg, K, Na and NH 4 (Department of Agriculture, Agronomic Division, Soil Testing Division, Raleigh, NC, 1953).

    Google Scholar 

  39. S. Muhammad, T. Müller, and R. G. Joergensen, “Compost and P amendments for stimulating microorganisms and maize growth in a saline soil from Pakistan in comparison with a nonsaline soil from Germany,” J. Plant Nutr. Soil Sci. 170 (6), 745–751 (2007). https://doi.org/10.1002/jpln.200625122

    Article  Google Scholar 

  40. M. N. Nielsen and A. Winding, Microorganisms as Indicators of Soil Health: Technical Report No. 388 (National Environmental Research Institute, Silkeborg, 2002).

  41. V. C. Pandey, K. Singh, B. Singh, and R. P. Singh, “New approaches to enhance eco- restoration efficiency of degraded sodic lands: critical research needs and future prospects,” Ecol. Restor. 29 (4), 322–325 (2011).

    Article  Google Scholar 

  42. C. E. Pankhurst, B. G. Hawke, H. J. McDonald, C. A. Kirkby, J. C. Buckerfield, P. Michelsen, K. A. O’Brien, V. V. S. R. Gupta, and B. M. Doube, “Evaluation of soil biological properties as potential bioindicators of soil health,” Aust. J. Exp. Agric. 35, 1015–1028 (1995). https://doi.org/10.1071/EA9951015

    Article  Google Scholar 

  43. M. G. Pitman and A. Läuchli, “Global impact of salinity and agricultural ecosystems,” in Salinity: Environment–Plants–Molecules, Ed. by A. Läuchli and U. Lüttge (Springer-Verlag, Dordrecht, 2002), pp. 3–20.

    Google Scholar 

  44. D. L. N. Rao and H. Pathak, “Ameliorative influence of organic matter on biological activity of salt-affected soils,” Arid Soil Res. Rehabil. 10 (4), 311–319 (1996). https://doi.org/10.1080/15324989609381446

    Article  Google Scholar 

  45. N. Rietz and R. J. Haynes, “Effects of irrigation-induced salinity and sodicity on soil microbial activity,” Soil Biol. Biochem. 35, 845–854 (2003). https://doi.org/10.1016/S0038-0717(03)00125-1

    Article  Google Scholar 

  46. J. Rousk, F. K. Elyaagubi, D. L. Jones, and D. L. Godbold, “Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient,” Soil Biol. Biochem. 43, 1881–1887 (2011). https://doi.org/10.1016/j.soilbio.2011.05.007

    Article  Google Scholar 

  47. S. K. Sanyal and S. K. De Datta, “Chemistry of phosphorus transformations in soil,” in Advances in Soil Science, Ed. by B. A. Stewart (Springer-Verlag, New York, 1991), Vol. 16, pp. 1–120. https://doi.org/10.1007/978-1-4612-3144-8_1

  48. R. Setia, P. Marschner, J. Baldock, D. Chittleborough, and V. Verma, “Relationships between carbon dioxide emission and soil properties in salt-affected landscapes,” Soil Biol. Biochem. 43, 667–674 (2011). https://doi.org/10.1016/j.soilbio.2010.12.004

    Article  Google Scholar 

  49. M. L. Silveira, N. B. Comerford, K. R. Reddy, J. Prenjer, and W. J. DeBusk, “Soil properties as indicators of disturbance in forest ecosystems of Georgia, USA,” Ecol. Indic. 9, 740–747 (2009). https://doi.org/10.1016/j.ecolind.2008.09.006

    Article  Google Scholar 

  50. K. Singh, “Microbial and enzyme activities of saline and sodic soils,” Land Degrad. Rehabil. 27, 706–718 (2016). https://doi.org/10.1002/ldr.2385

    Article  Google Scholar 

  51. K. Singh, P. Trivedi, G. Singh, B. Singh, and D. D. Patra, “Effect of different leaf litters on carbon, nitrogen and microbial activities of sodic soils,” Land Degrad. Dev. 27 (4), 1215–1226 (2016). https://doi.org/10.1002/ldr.2313

    Article  Google Scholar 

  52. P. Smith, D. S. Powlson, J. U. Smith, P. Falloon, and K. Coleman, “Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture,” Global Change Biol. 6 (5), 525–539 (2000). https://doi.org/10.1046/j.1365-2486.2000.00331.x

    Article  Google Scholar 

  53. P. Sparling, “Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter,” Aust. J. Soil Res. 30, 195–207 (1992). https://doi.org/10.1071/SR9920195

    Article  Google Scholar 

  54. P. Sparling, “Soil microbial biomass, activity and nutrient cycling as indicators of soil health,” in Biological Indicators of Soil Health, Ed. by C. E. Pankhurst, V. V. S. R. Gupta, and B. Doube (CAB Int., Wallingford, 1997), pp. 97–119.

    Google Scholar 

  55. P. Stefanovits, Brown Forest Soils of Hungary, 2nd ed. (Akadëmiai Kiadö, Budapest, 1971), pp. 179–182.

    Google Scholar 

  56. D. L. Suarez, “Sodic soil reclamation: modeling and field study,” Aust. J. Soil Res. 39, 1225–1246 (2001). https://doi.org/10.1071/SR00094

    Article  Google Scholar 

  57. Methodology of the Genetic Farm Scale Soil Mapping, Ed. by I. Szabolcs (Orslagos Mezögazdasagi Minösitö Intezet, Budapest, 1966) [in Hungarian].

    Google Scholar 

  58. I. Szabolcs, Review on Research of Salt-Affected Soils (UNESCO, Paris, 1979).

    Google Scholar 

  59. I. Szabolcs and G. Várallyay, “Limiting factors of soil fertility in Hungary,” Agrokem. Talajtan 27 (1–2), 181–202 (1978).

    Google Scholar 

  60. M. A. Tabatabai and J. M. Bremner, “Use of p-nitrophenyl phosphate for assay of soil phosphatase activity,” Soil Biol. Biochem. 1, 301–307 (1969). https://doi.org/10.1016/0038-0717(69)90012-1

    Article  Google Scholar 

  61. K. Tanji and W. W. Wallender, “Nature and extent of agricultural salinity and sodicity,” in Agricultural Salinity Assessment and Management, Ed. by W. W. Wallender and K. K. Tanji (American Society of Civil Engineers, New York, 2011), pp. 1–25. https://doi.org/10.1061/9780784411698.ch01

  62. M. Tejada, C. Garcia, J. L. Gonzalez, and M. T. Hernandez, “Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil,” Soil Biol. Biochem. 38, 1413–1421 (2006). https://doi.org/10.1016/j.soilbio.2005.10.017

    Article  Google Scholar 

  63. S. Tripathi, S. Kumari, A. Chakraborty, A. Gupta, K. Chakrabarti, and B. K. Bandyapadhyay, “Microbial biomass and its activities in salt-affected coastal soils,” Biol. Fertil. Soils 42, 273–277 (2006). https://doi.org/10.1007/s00374-005-0037-6

    Article  Google Scholar 

  64. E. D. Vance, P. C. Brookes, and D. C. Jenkinson, “An extraction method for measuring soil microbial biomass C,” Soil Biol. Biochem. 19, 703–707 (1987). https://doi.org/10.1016/0038-0717(87)90052-6

    Article  Google Scholar 

  65. A. Walkley and I. A. Black, “An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method,” Soil Sci. 37 (1), 29–38 (1934).

    Article  Google Scholar 

  66. T. G. Weldmichael, E. Michéli, H. Fodor, and B. Simon, “The influence of depth on soil chemical properties and microbial respiration in the upper soil horizons,” Eurasian Soil Sci. 53, 780–786 (2020). https://doi.org/10.1134/S1064229320060137

    Article  Google Scholar 

  67. J. Wichern, F. Wichern, and R. G. Joergensen, “Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils,” Geoderma 137 (1–2), 100–108 (2006). https://doi.org/10.1016/j.geoderma.2006.08.001

    Article  Google Scholar 

  68. B. Wick, R. F. Kühne, and P. L. G. Vlek, “Soil microbiological parameters as indicators of soil quality under improved fallow management systems in south-western Nigeria,” Plant Soil 202, 97–107 (1998). https://doi.org/10.1023/A:1004305615397

    Article  Google Scholar 

  69. H. Winja and M. G. M. Bruggenwert, Salinization and Sodication of the Soils in Office du Niger (Mali), a Quantitative Approach (Vakgroep Bodemkunde en Plantevoeding, Wageningen, 1994).

    Google Scholar 

  70. V. N. L. Wong, R. C. Dalal, and R. S. B. Greene, “Salinity and sodicity effects on respiration and microbial biomass of soil,” Biol. Fertil. Soils 44, 943–953 (2008). https://doi.org/10.1007/s00374-008-0279-1

    Article  Google Scholar 

  71. V. N. L. Wong, R. S. B. Greene, R. C. Dalal, and B. W. Murphy, “Soil carbon dynamics in saline and sodic soils: a review,” Soil Use Manage. 26, 2–11 (2010). https://doi.org/10.1111/j.1475-2743.2009.00251.x

    Article  Google Scholar 

  72. C. Yuan, Z. Li, H. Liu, M. Gao, and Y. Zhang, “Microbial biomass and activity in salt-affected soil under arid condition,” Appl. Soil Ecol. 35, 319–328 (2007). https://doi.org/10.1016/j.apsoil.2006.07.004

    Article  Google Scholar 

  73. T.-B. Zhang, Y. Kang, S.-H. Liu, and S.-P. Liu, “Alkaline phosphatase activity and its relationship to soil properties in a saline–sodic soil reclaimed by cropping wolfberry (Lycium barbarum L.) with drip irrigation,” Paddy Water Environ. 12 (2), 309–317 (2014). https://doi.org/10.1007/s10333-013-0384-0

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Tempus Public Foundation (Government of Hungary) for a doctoral scholarship (Stipendium Hungaricum Scholarship Program, No 2015-SH-500096) and the Higher Education Institutional Excellence Program (NKFIH-1159-6/2019) awarded by the Ministry for Innovation and Technology within the framework of water-related research of Szent István University and to Gábor Mészáros (KITE Pvt. Ltd. Hungary), for permission to use the study sites and the cultivation data for the Hungarian sites. The authors would like to express their appreciation to Dr. A.P. Singh (Head, Department of Environmental Science, Bareilly college, Bareilly, U.P., India), for providing necessary laboratory facilities for Indian site analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Makádi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangwar, R.K., Makádi, M., Demeter, I. et al. Comparing Soil Chemical and Biological Properties of Salt Affected Soils under Different Land Use Practices in Hungary and India. Eurasian Soil Sc. 54, 1007–1018 (2021). https://doi.org/10.1134/S1064229321070048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321070048

Keywords:

Navigation