Skip to main content
Log in

Long-Term Application of Chemical and Organic Fertilizers over 35 Years Differentially Affects Interannual Variation in Soil Inorganic Phosphorus Fractions in Acidic Paddy Soil

  • AGRICULTURAL CHEMISTRY AND SOIL FERTILITY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Phosphorus plays an important role in double rice cropping systems grown on acidic paddy soil. To improve our knowledge and increase crop utilization of applied phosphorus fertilizers in paddy soils, we investigated changes in the content of soil inorganic phosphorus fractions in response to long-term application of chemical and organic phosphorus fertilizers. In this 35-year-long experiment, paddy soil in a double rice cropping system received one of three different fertilizer treatments: (1) cattle manure, M; (2) a chemical fertilizer of nitrogen (N), phosphorus (P), and potassium (K), NPK; and (3) a combination of NPK and M (NPKM) twice per year. Results showed that the maximum contents of Olsen-P in M, NPK and NPKM stabilized at 12.9, 31.7 and 52.7 mg/kg, respectively over 35 years. In contrast, the proportions of soil inorganic phosphorus content in total phosphorus of M, NPK and NPKM changed from 62.2% at the beginning of the experiment to 53.3, 61.9 and 66.2%, respectively. At equal amounts of accumulated phosphorus surplus, the increasing rates of total inorganic phosphorus content and inorganic phosphorus fractions in NPK were much higher than those in M and NPKM. At an average amount of accumulated phosphorus surplus of 100 kg/ha, the total inorganic phosphorus content of the NPK and NPKM treatments increased by 39.6 and 21.6 mg/kg, respectively. Fertilization mainly decreased the ratio of organic phosphorus to inorganic phosphorus and increased the ratio of aluminum-bound-phosphorus (Al-P) to inorganic phosphorus, especially under the NPK and NPKM treatments. Redundancy analysis showed that total phosphorus and Olsen-P were more closely correlated to iron-bound-phosphorus (Fe-P), calcium-bound-phosphorus (Ca-P) and Al-P fractions. This study suggests that the NPK and NPKM treatments increased phosphorus supply and inorganic phosphorus fractions compared to the manure application. Therefore, to avoid accumulation of a surplus of unabsorbed phosphorus and minimize phosphorus-leaching risk from acidic paddy soil, rates of inorganic phosphorus application, such as the combined application of manure and inorganic phosphorus fertilizer, should be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Sharpley and B. Moyer, “Phosphorus forms in manure and compost and their release during simulated rainfall,” J. Environ. Qual. 22, 597–601 (2000). https://doi.org/10.2134/jeq2000.00472425002900060056x

    Article  Google Scholar 

  2. A. Soltangheisi, M. Rodrigues, M. J. A. Coelho, A. M. Gasperini, L. R. Sartor, and P. S. Pavinato, “Changes in soil phosphorus lability promoted by phosphate sources and cover crops,” Soil Tillage Res. 179, 20–28 (2018). https://doi.org/10.1016/j.still.2018.01.006

    Article  Google Scholar 

  3. A. Waqas, J. Huang, K. L. Liu, Q. Muhammad, N. K. Muhammad, J. Chen, G. Sun, Q. H. Huang, Y. R. Liu, G. R. Liu, M. Sun, C. Li, D. C. Li, A. Sehrish, N. Yodgar, et al., “Changes in phosphorus fractions associated with soil chemical properties under long-term organic and inorganic fertilization in paddy soils of southern China,” PLoS One 14 (5), e0216881 (2019). https://doi.org/10.1371/journal.pone.0216881

    Article  Google Scholar 

  4. A. Waqas, K. L. Liu, Q. Muhammad, J. Huang, Q. H. Huang, Y. M. Xu, A. Sehrish, M. Sajid, M. A. A. Rana, M. Mohsin, and H. M. Zhang, “Long-term mineral fertilization improved the grain yield and phosphorus use efficiency by changing soil P fractions in ferralic cambisol,” Agronomy 9, 784 (2019). https://doi.org/10.3390/agronomy9120784

    Article  Google Scholar 

  5. B. Pratap, K. N. Amaresh, S. Mohammad, T. Rahul, M. Sangita, K. Anjani, R. Rajagounder, B. P. Bipin, L. Banwari, G. Priyanka, K. S. Chinmaya, S. R. Koushik, and K. D. Pradeep, “Effects of 42-year long-term fertilizer management on soil phosphorus availability, fractionation, adsorption–desorption isotherm and plant uptake in flooded tropical rice,” Crop J. 3, 387–395 (2015). https://doi.org/10.1016/j.cj.2015.03.009

    Article  Google Scholar 

  6. C. H. Lee, C. Y. Park, K. D. Park, W. T. Jeon, and P. J. Kim, “Long-term effects of fertilization on the forms and availability of soil phosphorus in rice paddy,” Chemosphere 56, 299–304 (2004). https://doi.org/10.1016/j.chemosphere.2004.02.027

    Article  Google Scholar 

  7. D. Hesterberg, “Macro-scale chemical properties and x-ray absorption spectroscopy of soil phosphorus,” in Synchrotron based Techniques in Soils and Sediments, Ed. by B. Singh and M. Gräfe (Elsevier, Burlington, 2010), Vol. 34, pp. 313–356. https://doi.org/10.1016/S0166-2481(10)34011-6

  8. D. Pizzeghello, A. Berti, S. Nardi, and F. Morari, “Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy,” Agric. Ecosyst. Environ. 141 (1), 58–66 (2011). https://doi.org/10.1016/j.agee.2011.02.011

    Article  Google Scholar 

  9. E. Oburger, D. L. Jones, and W. W. Wenzel, “Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil,” Plant Soil 341, 363–382 (2011). https://doi.org/10.1007/s11104-010-0650-5

    Article  Google Scholar 

  10. H. Cui, Y. Ou, L. X. Wang, H. T. Wu, B. X. Yan, and Y. X. Li, “Distribution and release of phosphorus fractions associated with soil aggregate structure in restored wetlands,” Chemosphere 223, 319–329 (2019). https://doi.org/10.1016/j.chemosphere.2019.02.046

    Article  Google Scholar 

  11. H. Q. Meng, M. G. Xu, J. L. Lu, X. H. He, J. W. Li, X. J. Shi, C. Peng, B. R. Wang, and H. M. Zhang, “Soil pH dynamics and nitrogen transformations under long-term chemical fertilization in four typical Chinese croplands,” J. Integr. Agr. 12 (11), 2092–2102 (2013). https://doi.org/10.1016/S2095-3119(13)60398-6

    Article  Google Scholar 

  12. J. Huang, S. X. Zhang, X. J. Shi, Q. H. Huang, J. Nie, M. G. Xu, and H. M. Zhang, “Change of phosphorus recovery efficiency under long-term fertilization in typical farmland in southern China,” J. Plant Nutr. Ferti. 24 (6), 220–229 (2018). https://doi.org/10.11674/zwyf.18345

    Article  Google Scholar 

  13. J. P. Schmidt, S. W. Buol, and E. J. Kamprath, “Soil phosphorus dynamics during seventeen years of continuous cultivation: fractionation analyses,” Soil Sci. Soc. Am. J. 60, 1168–1172 (1996). https://doi.org/10.2136/sssaj1996.03615995006000040030x

    Article  Google Scholar 

  14. J. Shen, R. Li, F. Zhang, J. Fan, C. Tang, and Z. Rengel, “Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil,” Field Crops Res. 86, 225–238 (2004). doihttps://doi.org/10.1016/j.fcr.2003.08.013

    Article  Google Scholar 

  15. J. R. Fink, A. V. Inda, J. Bavaresco, V. Barrón, J. Torrent, and C. Bayer, “Phosphorus adsorption and desorption in undisturbed samples from subtropical soils under conventional tillage or no-tillage,” J. Plant Nutr. Soil Sci. 179, 198–205 (2016). https://doi.org/10.1002/jpln.201500017

    Article  Google Scholar 

  16. J. Wang and G. Chu, “Phosphate fertilizer form and application strategy affect phosphorus mobility and transformation in a drip-irrigated calcareous soil,” J. Plant Nutr. Soil Sci. 178, 914–922 (2015). https://doi.org/10.1002/jpln.201500339

    Article  Google Scholar 

  17. L. L. Hua, J. Liu, L. M. Zhai, B. Xi, F. L. Zhang, H. Y. Wang, H. B. Liu, A. Q. Chen, and B. Fu, “Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices,” Agric. Ecosyst. Environ. 245, 112–123 (2017). https://doi.org/10.1016/j.agee.2017.05.015

    Article  Google Scholar 

  18. L. L. Shi, M. X. Shen, C. Y. Lu, H. H. Wang, X. W. Zhou, M. J. Jin, and T. D. Wu, “Soil phosphorus dynamic, balance and critical P values in long-term fertilization experiment in Taihu Lake region, China,” J. Integr. Agric. 14 (12), 2446–2455 (2015). https://doi.org/10.1016/S2095-3119(15)61183-2

    Article  Google Scholar 

  19. M. A. Saleque, U. A. Naher, A. Islam, A. B. M. B. U. Pathan, A. T. M. S. Hossain, and C. A. Meisner, “Inorganic and organic phosphorus fertilizer effects on the phosphorus fractionation in wetland rice soils,” Soil Sci. Soc. Am. J. 68, 1635–1644 (2004). https://doi.org/10.2136/sssaj2004.1635

    Article  Google Scholar 

  20. M. N. Shafqat and G. M. Pierzynski, “Soil test phosphorus dynamics in animal waste amended soils: Using P mass balance approach,” Chemosphere 90, 691– 698 (2013). https://doi.org/10.1016/j.chemosphere.2012.09.050

    Article  Google Scholar 

  21. M. N. Shafqat and G. M. Pierzynski, “The effect of various sources and dose of phosphorus on residual soil test phosphorus in different soils,” Catena 105, 21–28 (2013). https://doi.org/10.1016/j.catena.2013.01.003

    Article  Google Scholar 

  22. M. P. Chen and T. E. Graedel, “A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts,” Global Environ. Change 36, 139–152 (2016). https://doi.org/10.1016/j.gloenvcha.2015.12.005

    Article  Google Scholar 

  23. N. Cao, X. P. Chen, Z. L. Cui, and F. S. Zhang, “Change in soil available phosphorus in relation to the phosphorus budget in China,” Nutr. Cycl. Agroecosyst. 94, 161–170 (2012). https://doi.org/10.1007/s10705-012-9530-0

    Article  Google Scholar 

  24. O. B. Rogova, N. A. Kolobova, and A. L. Ivanov, “Phosphorus sorption capacity of gray forest soil as dependent on fertilization system,” Eurasian Soil Sci. 51, 536–541 (2018). https://doi-org-s.caas.cn/10.1134/S1064229318050101

    Article  Google Scholar 

  25. Q. F. Bi, B. X. Zheng, X. Y. Lin, K. J. Li, X. P. Liu, X. L. Hao, H. Zhang, J. B. Zhang, D. P. Jaisi, and Y. G. Zhu, “The microbial cycling of phosphorus on long-term fertilized soil: Insights from phosphate oxygen isotope ratios,” Chem. Geol. 483, 56–64 (2018). https://doi.org/10.1016/j.chemgeo.2018.02.013

    Article  Google Scholar 

  26. Q. Zhang, G. H. Wang, Y. K. Feng, Q. Z. Sun, C. Witt, and A. Dobermann, “Changes in soil phosphorus fractions in a calcareous paddy soil under intensive rice cropping,” Plant Soil 288 (1–2), 141–154 (2006). https://doi.org/10.1007/s11104-006-9100-9

    Article  Google Scholar 

  27. R. W. McDowell and I. Stewart, “The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: Sequential extraction and 31P NMR,” Geoderma 130 (1–2), 176–189 (2006). https://doi.org/10.1016/j.geoderma.2005.01.020

    Article  Google Scholar 

  28. S. B. Lee, C. H. Lee, K. Y. Jung, K. D. Park, D. Lee and P. J. Kim, “Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy,” Soil Tillage Res. 104 (2), 227–232 (2009).

    Article  Google Scholar 

  29. S. C. Sheppard and J. G. Racz, “Phosphorus nutrition of crops as affected by temperature and water supply,” in Proceedings of the Alberta Soil Science Workshop and Western Canada Phosphate Symposium (Alberta, 1980) pp. 159–199.

  30. S. D. Bao, Soil Agriculturalization Analysis (China Agriculture Press: Beijing, 1981) [in Chinese].

    Google Scholar 

  31. S. Milić, J. Ninkov, T. Zeremski, D. Latković, S. Šeremešić, V. Radovanović, and B. Žarković, “Soil fertility and phosphorus fractions in a calcareous chernozem after a long-term field experiment,” Geoderma 339, 9–19 (2019). https://doi.org/10.1016/j.geoderma.2018.12.017

    Article  Google Scholar 

  32. S. R. Olsen, C. V. Cole, F. S. Watanabe and A. Dean, Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (United States Department of Agriculture, Washington, DC, 1954).

    Google Scholar 

  33. S. Sandipan, C. Poulami, T. Jaak, A. Rangasamy, K. Sukjin, and S. Tongmin, “Long-term phosphorus limitation changes the bacterial community structure and functioning in paddy soils,” Appl. Soil Ecol. 134, 111–115 (2019). https://doi.org/10.1016/j.apsoil.2018.10.016

    Article  Google Scholar 

  34. W. W. Zhang, X. Y. Zhan, S. X. Zhang, H. M. I. Khalid, and M. G. Xu, “Response of soil Olsen-P to P budget under different long-term fertilization treatments in a fluvoaquic soil,” J. Integr. Agric. 18 (3), 667–676 (2019). https://doi.org/10.1016/j.still.2009.02.007

    Article  Google Scholar 

  35. X. Chen, K. Fang, and C. Chen, “Seasonal variation and impact factors of available phosphorus in typical paddy soils of Taihu Lake region, China,” Water Environ. J. 26 (3), 392–398 (2012). https://doi.org/10.1111/j.1747-6593.2011.00299.x

    Article  Google Scholar 

  36. X. Yan, Z. Q. Wei, Q. Q. Hong, Z. H. Lu, and J. F. Wu, “Phosphorus fractions and sorption characteristics in a subtropical paddy soil as influenced by fertilizer sources,” Geoderma 295, 80–85 (2017). https://doi.org/10.1016/j.geoderma.2017.02.012

    Article  Google Scholar 

  37. X. Zhan, L. Zhang, B. Zhou, P. Zhu, S. Zhang, and M. Xu, “Changes in Olsen phosphorus concentration and its response to phosphorus balance in black soils under different long-term fertilization patterns,” PLoS One 10, e0131713 (2015). https://doi.org/10.1371/journal.pone.0131713

    Article  Google Scholar 

  38. Y. Arai and D. L. Sparks, “Phosphate reaction dynamics in soils and soil minerals: a multiscale approach,” Adv. Agron. 94, 135–179 (2007).

    Article  Google Scholar 

  39. Y. Y. Li, R. Yang, R. Gao, H. A. Wei, A. L. Chen, and Y. Li, “Effects of long-term phosphorus fertilization and straw incorporation on phosphorus fractions in subtropical paddy soil,” J. Integr. Agric. 14 (2), 365–373 (2015). https://doi.org/10.1016/S2095-3119(13)60684-X

    Article  Google Scholar 

  40. Z. H. Cao and H. C. Zhang, “Phosphorus losses to water from lowland rice fields under rice–wheat double cropping system in the Tai Lake region,” Environ. Geochem. Health 26, 229–236 (2004). https://doi.org/10.1023/B:EGAH.0000039585.24651.f8

    Article  Google Scholar 

  41. Z. J. Yan, P. P. Liu, Y. H. Li, L. Ma, A. Alva, Z. X. Dou, Q. Chen, and F. S. Zhang, “Phosphorus in China’s intensive vegetable production systems: overfertilization, soil enrichment, and environmental implications,” J. Environ. Qual. 42 (4), 982–989 (2013). https://doi.org/10.2134/jeq2012.0463

    Article  Google Scholar 

  42. Z. M. Lan, X. J. Lin, F. Wang, H. Zhang, and C. R. Chen, “Phosphorus availability and rice grain yield in a paddy soil in response to long-term fertilization,” Biol. Fert. Soils 48, 579–588 (2012). https://doi.org/10.1007/s00374-011-0650-5

    Article  Google Scholar 

  43. Z. T. Gong, G. L. Zhang, and G. B. Luo, “Diversity of Anthrosols in China,” Pedosphere 9, 193–204 (1999). doi CNKI:SUN:TRQY.0.1999-03-000

Download references

ACKNOWLEDGMENTS

We acknowledge all staff for their valuable work associated with the long-term fertilization experiment in Qiyang experimental site, and the valuable suggestions of reviewers and the hard work of the editorial department.

Funding

This research was funded by the National Key Research and Development Program of China (2016YFD0300902, 2016YFD0300901), Fundamental Research Funds for Central Non-profit Scientific Institution of China (No. 1610132020023, No.1610132020022, No. 161032019035), and Hengyang Science and Technology Project, Hunan province in China (No. 2019yj010733).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Huang, Muhammad Qaswar, Huimin Zhang or Jusheng Gao.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing Huang, Qaswar, M., Khan, M.N. et al. Long-Term Application of Chemical and Organic Fertilizers over 35 Years Differentially Affects Interannual Variation in Soil Inorganic Phosphorus Fractions in Acidic Paddy Soil. Eurasian Soil Sc. 54, 772–782 (2021). https://doi.org/10.1134/S1064229321050112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321050112

Keywords:

Navigation