Skip to main content
Log in

Variations in Soil Carbon and Nitrogen Contents under Different Land Uses in Sub-Temperate Highland of Azad Kashmir

  • AGRICULTURAL CHEMISTRY AND SOIL FERTILITY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Land use type affects the soil organic carbon (SOC) which is an important indicator of soil quality. Current study was aimed to investigate land use type and seasonal impact on soil properties, soil organic carbon and total nitrogen under three land use types i.e. cropland (CL), grassland (GL) and forestland (FL) of a sub-temperate highland of Azad Jammu & Kashmir. Soil samples were taken from the depths of 0–15 and 15–30 cm depths in summer, winter, autumn, and spring. Cropland was more alkaline (7.13) than grassland (7.0) and forestland (6.64) indicating higher pH values of about 2–7%. Similarly, soil bulk density was higher in cropland than in grassland and forestland. Particle-size distribution among land use type showed that grassland and forestland had 9–16% less and 10–20% higher clay contents than cropland. Soil organic carbon (SOC) and total nitrogen (TN) content were inversely proportional to soil depth, mainly concentrated in surface soil and were higher in forestland than grassland and cropland. Most of the soil organic carbon and total nitrogen was associated with macroaggregates (Ma) in 0–15 cm and with microaggregates (Mi) in 15–30 cm soil layers, whereas silt + clay fraction had least SOC and TN contents irrespective of land use and soil depth. Bulk density and soil particle-size distribution didn’t change during the year. However, soil pH, soil organic carbon and total nitrogen significantly varied between seasons. The present study indicated that soil properties were greatly influenced by the land use type than by seasons. Therefore, the study reinforces the need for developing and devising suitable soil management practices for croplands. Incorporation of organic inputs and retaining the land cover with natural vegetation, or mulching should be promoted in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. S. Meena, T. Mondal, B. M. Pandey, A. Mukherjee, R. P. Yadav, M. Choudhary, S. Singh, J. K. Bisht, and A. Pattanayak, “Land use changes: strategies to improve soil carbon and nitrogen storage pattern in the mid-Himalaya ecosystem, India,” Geoderma 321, 69–78 (2018). https://doi.org/10.1016/j.geoderma.2018.02.002

    Article  Google Scholar 

  2. A. Walkley and I. A. Black, “An examination of Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method,” Soil Sci. 37, 29–38 (1934).

    Article  Google Scholar 

  3. B. A. Miheretu, and A. A. Yimer, “Spatial variability of selected soil properties in relation to land use and slope position in Gelana sub-watershed, Northern highlands of Ethiopia,” Phys. Geogr. 39 (3), 230–245 (2018). https://doi.org/10.1080/02723646.2017.1380972

    Article  Google Scholar 

  4. B. Barthès and E. Roose, “Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels,” Catena 47 (2), 133–149 (2002). https://doi.org/10.1016/S0341-8162(01)00180-1

    Article  Google Scholar 

  5. B. M. Shrestha, B. R. Singh, B. K. Sitaula, R. Lal, and R. M. Bajracharya, “Soil aggregate- and particle-associated organic carbon under different land uses in Nepal,” Soil Sci. Soc. Am. J. 71 (4), 1194–1203 (2008). https://doi.org/10.2136/sssaj2006.0405

    Article  Google Scholar 

  6. B. Minasny, B. P. Malone, and A. B. McBratney, “'Soil carbon 4 per mille,” Geoderma 292, 59–86 (2017). https://doi.org/10.1016/j.geoderma.2017.01.002

    Article  Google Scholar 

  7. C. Castro Filho, A. Lourenço, M. de F. Guimarães, and I. C. B. Fonseca, “Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil,” Soil Tillage Res. 65 (1), 45–51 (2002). https://doi.org/10.1016/S0167-1987(01)00275-6

    Article  Google Scholar 

  8. C. Celik, “Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey,” Soil Tillage Res. 83 (2), 270–277 (2005). https://doi.org/10.1016/j.still.2004.08.001

    Article  Google Scholar 

  9. C. Poeplau, A. Don, L. Vesterdal, J. Leifeld, B. V. V. Wesemael, J. Schumacher, and A. Gensior, “Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach,” Global Change Biol. 17 (7), 2415–2427 (2011). https://doi.org/10.1111/j.1365-2486.2011.02408.x

    Article  Google Scholar 

  10. L. Deng, G.-Y. Zhu, Z.-S. Tang, and Z.-P. Shangguan, “Global patterns of the effects of land-use changes on soil carbon stocks,” Global Ecol. Conserv. 5, 127–138 (2016). https://doi.org/10.1016/j.gecco.2015.12.004

    Article  Google Scholar 

  11. E. T. Elliott, “Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils,” Soil Sci. Soc. Am. J. 50 (3), 627–633 (1986). https://doi.org/10.2136/sssaj1986.03615995005000030017x

    Article  Google Scholar 

  12. F. Yimer, S. Ledin, and A. Abdelkadir, “Changes in soil organic carbon and total nitrogen contents in three adjacent land use types in the Bale Mountains, south-eastern highlands of Ethiopia,” Forest Ecol. Manage. 242 (2–3), 337–342 (2007). https://doi.org/10.1016/j.foreco.2007.01.087

    Article  Google Scholar 

  13. G. Girmay, B. R. Singh, J. Nyssen, and T. Borrosen, “Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia,” J. Hydrol. 376 (1–2), 70–80 (2009). https://doi.org/10.1016/j.jhydrol.2009.07.066

    Article  Google Scholar 

  14. G. J. Bouyoucos, “Hydrometer method improved for making particle size analysis of soils,” Agron. J. 54 (5), 464–465 (1962). https://doi.org/10.2134/agronj1962.00021962005400050028x

    Article  Google Scholar 

  15. G. R. Blake, and K. H. Hartge, “Bulk density,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Ed. by A. Klute (Soil Science Society of America, Madison, WI, 1986), pp. 363–375.

  16. H. Dameni, J. Wang, and L. Qin, “Soil aggregate and organic carbon stability under different land uses in the North China Plain,” Commun. Soil Sci. Plant Anal. 41 (9), 1144–1157 (2010). https://doi.org/10.1080/00103621003711297

    Article  Google Scholar 

  17. H. R. Oberholzer, J. Leifeld, and J. Mayer, “Changes in soil carbon and crop yield over 60 years in the Zurich Organic Fertilization Experiment, following land-use change from grassland to cropland,” J. Plant Nutr. Soil Sci. 177 (5), 696–704 (2014). https://doi.org/10.1002/jpln.201300385

    Article  Google Scholar 

  18. J. D. Jastrow, “Soil aggregate formation and the accrual of particulate and mineral-associated organic matter,” Soil Biol. Biochem. 28 (4–5), 665–676 (1996). https://doi.org/10.1016/0038-0717(95)00159-X

    Article  Google Scholar 

  19. J. E. Herrick, W. G. Whitford, A. G. de Soyza, J. W. Van Zee, K. M. Havstad, C. A. Seybold, and M. Walton, “Field soil aggregate stability kit for soil quality and rangeland health evaluations,” Catena 44 (1), 27–35 (2001). https://doi.org/10.1016/S0341-8162(00)00173-9

    Article  Google Scholar 

  20. J. M. Bremner and C. S. Mulvaney, “Nitrogen-Total,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by A. L. Page, et al. (Soil Science Society of America, American Society of Agronomy, Madison, WI, 1982), pp. 383–411.

  21. J. Six, R. T. Conant, E. A. Paul, and K. Paustian, “Stabilization mechanisms of soil organic matter: implications for C-saturation of soils,” Plant Soil 241 (2), 155–176 (2002). https://doi.org/10.1023/A:1016125726789

    Article  Google Scholar 

  22. K. M. Samani, N. Pordel, V. Hosseini, and Z. Borrosen, “Effect of land-use changes on chemical and physical properties of soil in western Iran (Zagros oak forests),” J. For. Res. 31 (2), 637–647 (2020). https://doi.org/10.1007/s11676-018-0799-y

    Article  Google Scholar 

  23. K. R. Islam and R. R. Weil, “Land use effects on soil quality in a tropical forest ecosystem of Bangladesh,” Agric., Ecosyst. Environ. 79 (1), 9–16 (2000). https://doi.org/10.1016/S0167-8809(99)00145-0

    Article  Google Scholar 

  24. K. R. Olson and A. N. Gennadiev, “Dynamics of soil organic carbon storage and erosion due to land use change (Illinois, USA),” Eurasian Soil Sci. 53, 436–445 (2020). https://doi.org/10.1134/S1064229320040122

    Article  Google Scholar 

  25. A. Kavian, A. Azmoodeh, and K. Solaimani, “Deforestation effects on soil properties, runoff and erosion in northern Iran,” Arab. J. Geosci. 7 (5), 1941–1950 (2014). https://doi.org/10.1007/s12517-013-0853-1

    Article  Google Scholar 

  26. L. Martínez-Zavala, A. Jordán López, and N. Bellinfante, “Seasonal variability of runoff and soil loss on forest road backslopes under simulated rainfall,” Catena 74 (1), 73–79 (2008). https://doi.org/10.1016/j.catena.2008.03.006

    Article  Google Scholar 

  27. L. Qiu, X. Wei, X. Zhang, J. Cheng, W. Gale, C. Guo, and T. Long, “Soil organic carbon losses due to land use change in a semiarid grassland,” Plant Soil 355 (1–2), 299–309 (2012). https://doi.org/10.1007/s11104-011-1099-x

    Article  Google Scholar 

  28. M. K. Abbasi, M. Zafar, and S. R. Khan, “Influence of different land-cover types on the changes of selected soil properties in the mountain region of Rawalakot Azad Jammu and Kashmir,” Nutr. Cycl. Agroecosyst. 78 (1), 97–110 (2007). https://doi.org/10.1007/s10705-006-9077-z

    Article  Google Scholar 

  29. M. Maharjan, M. Sanaullah, B. S. Razavi, and Y. Kuzyakov, “Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top- and sub-soils,” Appl. Soil Ecol. 113, 22–28 (2017). https://doi.org/10.1016/j.apsoil.2017.01.008

    Article  Google Scholar 

  30. M. Martıinez-Mena, K. Deeks, and A. G. Williams, “An evaluation of a fragmentation fractal dimension technique to determine soil erodibility,” Geoderma 90 (1–2), 87–98 (1999). https://doi.org/10.1016/S0016-7061(98)00097-4

    Article  Google Scholar 

  31. M. R. Bravo-Garza, P. Voroney, and R. B. Bryan, “Particulate organic matter in water stable aggregates formed after the addition of 14C-labeled maize residues and wetting and drying cycles in vertisols,” Soil Biol. Biochem. 42 (6), 953–959 (2010). https://doi.org/10.1016/j.soilbio.2010.02.012

    Article  Google Scholar 

  32. M. S. Sanatana, E. V. B. Sampaio, V. Giongo, R. S. C. Menezes, K. N. Jesus, E. R. G. M. Albuquerque, D. M. Nascimento, F. G. C. P. Pareyn, T. J. F. Cunha, R. M. B. Sampaio, and D. C. Primo, “Carbon and nitrogen stocks of soils under different land uses in Pernambuco state, Brazil,” Geoderma Reg. 16, e00205 (2019). https://doi.org/10.1016/j.geodrs.2019.e00205

    Article  Google Scholar 

  33. M. Safaei, H. Bashari, M. R. Mosaddeghi, and R. Jafari, “Assessing the impacts of land use and land cover changes on soil functions using landscape function analysis and soil quality indicators in semi-arid natural ecosystems,” Catena 177, 260–271 (2019). https://doi.org/10.1016/j.catena.2019.02.021

    Article  Google Scholar 

  34. M. V. Fey, A. D. Manson, and R. Schutte, “Acidification of the pedosphere,” S. Afr. J. Plant Soil 86 (7–10), 403–406 (1990).

    Google Scholar 

  35. M. Wiesmeier, M. V. Lützow, P. Spörlein, U. Geu, E. Hangen, A. Reischl, B. Schilling, and I. Kögel-Knabnera, “Land use effects on organic carbon storage in soils of Bavaria: The importance of soil types,” Soil Tillage Res. 146, 296–302 (2015). https://doi.org/10.1016/j.still.2014.10.003

    Article  Google Scholar 

  36. M. Wiesmeier, P. Spörlein, U. Geu, E. Hangen, S. Haug, A. Reischl, B. Schilling, M. von Lützow, and I. Kögel-Knabner, “Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth,” Global Change Biol. 18 (7), 2233–2245 (2012). https://doi.org/10.1111/j.1365-2486.2012.02699.x

    Article  Google Scholar 

  37. N. Brady and R. Weil, The Nature and Properties of Soils (Prentice Hall, Upper Saddle River, NJ, 2002).

    Google Scholar 

  38. N. F. Fang, Z. H. Shi, L. Li, Z. L. Guo, Q. J. Liu, and L. Ai, “The effects of rainfall regimes and land use changes on runoff and soil loss in a small mountainous watershed,” Catena 99, 1–8 (2012). https://doi.org/10.1016/j.catena.2012.07.004

    Article  Google Scholar 

  39. P. Illiger, G. Schmidt, I. Walde, S. Hese, A. E. Kudrjavzev, N. Kurepina, A. Mizgirev, E. Stephan, A. Bondarovich, and M. Fruhauf, “Estimation of regional soil organic carbon stocks merging classified land-use information with detailed soil data,” Sci. Total Environ. 695 (10), 133–755 (2019). https://doi.org/10.1016/j.scitotenv.2019.133755

    Article  Google Scholar 

  40. R. A. Houghton, “Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000,” Tellus B 55 (2), 378–390 (2003). https://doi.org/10.1034/j.1600-0889.2003.01450.x

    Article  Google Scholar 

  41. R. Lal, “Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration,” Food Security 2 (2), 169–177 (2010). https://doi.org/10.1007/s12571-010-0060-9

    Article  Google Scholar 

  42. R. Lal, W. Negassa, and K. Lorenz, “Carbon sequestration in soil,” Curr. Opin. Environ. Sustainability 15, 79–86 (2015). https://doi.org/10.1016/j.cosust.2015.09.002

    Article  Google Scholar 

  43. R. P. Yadav, J. K. Bisht, B. M. Pandey, A. Kumar, and A. Pattanayak, “Cutting management versus biomass and carbon stock of oak under high density plantation in central Himalaya, India,” Appl. Ecol. Environ. Res. 14 (3), 207–214 (2016). https://doi.org/10.15666/aeer/1403_207214

    Article  Google Scholar 

  44. S. Ayoubi, F. K. Khormali, L. Sahrawat, and R. Lima, “Assessing impacts of land use change on soil quality indicators in a loessial soil in Golestan Province, Iran,” J. Agric. Sci. Technol. 13 (5), 727–742 (2011).

    Google Scholar 

  45. S. Niaz, S. Ijaz, A. Hassan, and M. Sharif, “Land-use impacts on soil organic carbon fractions in different rainfall areas of a subtropical dryland,” Arch. Agron. Soil Sci. 63 (10), 1337–1345 (2017). https://doi.org/10.1080/03650340.2017.1280727

    Article  Google Scholar 

  46. Soil Survey Staff, Keys to Soil Taxonomy (USDA Natural Resources Conservation Service, Washington, DC, 2010).

    Google Scholar 

  47. T. Chibsa and A. A. Ta, “Assessment of soil organic matter under four land use systems in major soils of bale highlands, southeast Ethiopia. b. Factors affecting soil organic matter distribution,” World Appl. Sci. J. 6 (11), 1231–1246 (2009).

    Google Scholar 

  48. T. Rasool, A. Q. Dara, and M. A. Wani, “Quantification of spatial variability of soil physical properties in a lesser Himalayan sub-basin of India,” Eurasian Soil Sci. 53, 362–376 (2020). https://doi.org/10.1134/S1064229320030060

    Article  Google Scholar 

  49. U. Sahani and N. Behera, “Impact of deforestation on soil physicochemical characteristics, microbial biomass and microbial activity of tropical soil,” Land Degrad. Dev. 12 (2), 93–105, (2001). https://doi.org/10.1002/ldr.429

    Article  Google Scholar 

  50. U. Stockmann, J. Padarian, A. Mcbratney, B. Minasny, D. D. Brogniez, L. Montanarella, S. Y. Hong, B. G. Rawlins, and D. J. Field, “Global soil organic carbon assessment,” Global Food Security 6, 9–16 (2015). https://doi.org/10.1016/j.gfs.2015.07.001

    Article  Google Scholar 

  51. V. Schreiner and B. C. Meyer, “Indicators of land degradation in steppe regions: Soil and morphodynamics in the Northern Kulunda,” in Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia, Ed. by L. Mueller, et al. (Springer-Verlag, Cham, 2014), pp. 535–548. https://doi.org/10.1007/978-3-319-01017-5_33

  52. W. Barthes, E. Amezquita, M. J. Fisher, and R. Lal, “Soil organic carbon dynamics and land use in the Colombian Savannas I: Aggregate size distribution”, in Soil Processes and the Carbon Cycle, Ed. by R. Lal, (CRC Press, Boca Raton, FL, 1997), pp. 267–280.

    Google Scholar 

  53. X. Wang, L. Pu, M. Zhang, Q. Wang, and X. Yu, “Spatial and temporal variations of soil organic carbon and total nitrogen pools in the coastal reclamation area, eastern China,” Environ. Earth Sci. 74 (6), 4763–4769 (2015). https://doi.org/10.1007/s12665-015-4459-7

    Article  Google Scholar 

  54. X. Wei, M. Shao, W. Gale, and L. Li, “Global pattern of soil carbon losses due to the conversion of forests to agricultural land,” Sci. Rep. 4, 1062 (2014). https://doi.org/10.1038/srep04062

    Article  Google Scholar 

  55. H.-C. Ye, Y.-F. Huang, P.-F. Chen, W.-J. Huang, S.‑W. Zhang, S.-Y. Huang, and S. Hou, “Effects of land use change on the spatiotemporal variability of soil organic carbon in an urban-rural ecotone of Beijing, China,” J. Integr. Agric. 15 (4), 918–928 (2016). https://doi.org/10.1016/S2095-3119(15)61066-8

    Article  Google Scholar 

  56. Y. Q. Luo, R. Sherry, X. Zhou, and S. Q. Wan, “Terrestrial carbon-cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest,” Global Change Biol. Bioener. 1 (1), 62–74 (2009). https://doi.org/10.1111/j.1757-1707.2008.01005.x

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of the laboratory of Soil & Environmental sciences for soil sampling and analysis. We are also thankful to the anonymous reviewers for their insightful comments on the previous version of this paper.

Funding

This study was supported by the University of Poonch Rawalakot through promotion of research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Tahir.

Ethics declarations

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahir, M.M., Khalid, A.B., Mehmood, K. et al. Variations in Soil Carbon and Nitrogen Contents under Different Land Uses in Sub-Temperate Highland of Azad Kashmir. Eurasian Soil Sc. 54, 586–596 (2021). https://doi.org/10.1134/S1064229321040153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321040153

Keywords:

Navigation