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Abstract—Point cloud registration is a central problem in many computer vision problems. However, ensur-
ing global consistency of the results of pairwise registration of point clouds is still a challenge when there are
multiple clouds because different scans should be converted to a common coordinate system. This paper
describes a global refinement algorithm that first estimates rotations and then estimates parallel translations.
For global refinement of rotations, a closed-form algorithm based on matrices is used. For global refinement
of parallel translations, a closed-form algorithm is also used. The proposed algorithm is compared with other
global refinement algorithms.
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INTRODUCTION
For effectively solving problems that are performed

by mobile robots, it is necessary to construct a 3D
model (map) of the space surrounding the robot. An
exact map allows the mobile robots to operate under
complex conditions by use of only an onboard sensor.
Creation of maps of the surrounding medium is called
the problem of simultaneous localization and map-
ping (SLAM). The SLAM problem based on the use
of graphs was proposed by Lu and Milios in 1997 [1].
The known approaches to registration of several point
clouds consist of the pairwise registration stage and
the global refinement stage. Pairwise registration
includes attribute matching between pairs of point
clouds and minimization of the sum of residuals over
all such correspondences to estimate transformation
parameters that establish the relative mutual arrange-
ment for each pair of point clouds in the common
coordinate system. Pairwise registration involves stan-
dard methods of point cloud alignment. The problem
of point cloud registration in the three-dimensional
space is a fundamental problem of computational
geometry and computer vision.

In most cases, global refinement algorithms first
find parameters of pairwise transformations by use of
[2–14] and then uniformly redistribute errors using
graph-based optimization [1, 15]. The graph-based
SLAM problem involves the scan graph in which each
scanning corresponds to a vertex and each edge corre-
sponds to the spatial connection between pairs of
nodes. Globally consistent registration of several point

clouds by graph optimization was described in [16].
Further, for the uniform distribution of the error, least
squares optimization is used [1]. In [17], the branch-
and-bound strategy is used for the global solution of
the objective function. The approach proposed in [18]
uses surfaces and Bayesian filters for point cloud
alignment. The main disadvantage of this method is its
high computational cost. Other approaches to global
refinement are based on general graph optimization
[19], bundle adjustment [20], low-rank sparse decom-
position [21], and kernel-based energy function [22].

In [23], the algorithm of global refinement of
transformations for point clouds obtained by scanning
of the urban environment was described. The algo-
rithm described in [23] first performs global refine-
ment for rotations by use of quaternions and then
implements global refinement of parallel translations
using the specificity of the urban environment. In the
proposed work, for comparisons in computer simula-
tion we use the global refinement algorithm for rota-
tions by use of quaternions as it was presented in [23].

The global refinement algorithm described in the
proposed paper first estimates rotations and then esti-
mates parallel translations. For global refinement of
rotations, the closed-form algorithm is used by means
of matrices. For global refinement of parallel transla-
tions, the closed-form algorithm is used.

This paper is organized as follows. Section 1 pres-
ents the statement of the problem and describes algo-
rithms of its solution. Section 2 presents results of
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Fig. 1. Graph describing transformations between point clouds.

C2

C1

C3

C4

C0

(C32, T32)

(R23, T23)

(R43, T43)

(R34, T34)

(R3, T3)

(R12, T12)
(R21, T21)

(R01, T01)

(R4, T4)
(R10, T10)

(R1, T1)
computer simulation. Section 3 contains the conclu-
sions.

1. GLOBAL REFINEMENT OF RESULTS 
OF PAIRWISE POINT CLOUD REGISTRATION

Let C0, C1, ..., Cs be the initial set of point clouds
and (Rij, Tij), i, j = 0, 1, ..., s be results of pairwise cloud
registration, where Cj is the reference cloud, Ci is the
objective cloud, Rij ∈ SO(3) is the rotation matrix, and
Tij ∈ R3 is the parallel translation vector.

Let (Ri, Ti), i = 0, 1, ..., s, denote transformation
mapping of cloud Ci to the coordinate system of cloud
C0. Interpreting point clouds and transformations as
vertices and edges, respectively, we obtain a graph, an
example of which is shown in Fig. 1. Global refine-
ment of pairwise transformations is based on commu-
tativity of cycles contained in the graph.

1.1. Global Refinement of Rotations
The condition of commutativity of cycles with

respect to rotations means that the following condi-
tions are satisfied:

(1)

where i, j = 0, 1, ..., s. Let us associate system of equa-
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Since the graph can contain not only edges, we replace
functional J '(R) by functional J(R):
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where

By the solution of system (1) we mean the solution of
the following variational problem:
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Gradient  takes form:

(8)

Taking into account that R0 = I, we introduce the fol-
lowing notation:

(9)

(10)

Equality  = 0 takes form:

(11)

where k = 1, ..., s.
Vanishing of the gradient yields the following linear

system of matrix equations:

(12)

Let us rewrite system of equations (12) numerically
and calculate the affine solution of variational prob-
lem (4). We find projections , ...,  of obtained
matrices R1, ..., Rs on SO(3):

(13)

where Uk and Vk are elements of the SVD-representa-
tion of matrix Rk.

1.2. Global Refinement of Parallel Translations
The condition of commutativity for cycles of the

graph shown in Fig. 1 defines the following system of
equations:

(14)
Let us associate system of equations (14) functional
J(T):

(15)

where

By the solution of system (14) we mean the solution of
the following variational problem:

(16)

where T = (T0, T1, ..., Ts). The gradient  with
respect to Tk, k = 0, 1, ..., s is calculated as follows:

(17)

Vanishing of the gradient with respect to Tk, k = 0,
1, ..., s yields the following equation:

(18)

Let Bk, k = 0, 1, ..., s, denote the following expression:

(19)

Variational problem (16) is reduced to solving a system
of linear equations in vectors:
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Table 1. Accuracy of calculation of rotations by the GR_ICP,
GR, and GR_Q algorithms

GR_ICP GR GR_Q

last_R 0.123889 0.0659746 1.36848
avg_R 0.101394 0.0735572 1.062
max_R 0.138166 0.0888956 1.36848

Table 2. Accuracy of calculation of parallel translations by
the GR_ICP, GR, and GR_Q algorithms

GR_ICP GR GR_Q

last_T 481.247 35.8375 602.814
avg_T 136.175 18.4498 218.057
max_T 481.247 35.8375 602.814
Let M denote the matrix in Eq. (20). Then, solving the
variational problem is reduced to solving three systems
of numerical equations:

(21)

where i = 1, 2, 3 is the number of the vector compo-
nent.

2. COMPUTER SIMULATION
We denote the global refinement algorithm pro-

posed in this paper as GR. Let us describe other algo-
rithms under consideration.

For cloud Ck, k = 1, ..., s, we consider transforma-
tion Mk(k – 1) equal to the result of projection of matrix
1/2(R(k – 1)k + Rk(k – 1)) on SO(3). Let Tk, k = 1, ..., s,
denote the parallel translation vector equal to vector
1/2(T(k – 1)k + Tk(k – 1)). The transformation ((M1M2  ...
Mk), (T1 + T2 + ... + Tk)) maps cloud Ck to the coordi-
nate system of cloud C0. We denote this global refine-
ment algorithm as R_ICP.

In [23], the global refinement algorithm was
described individually for rotations and parallel trans-
lations. The algorithm for rotations is based on using
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Table 3. Accuracy of calculation of rotations by the
GR_ICP, GR, and GR_Q algorithms

GR_ICP GR GR_Q

last_R 0.140062 0.140093 0.0118888
avg_R 0.0661191 0.0661755 0.0092607
max_R 0.140062 0.140093 0.0242108
quaternions. Let GR_Q denote the global refinement
algorithm that uses the rotation refinement algorithm
described in [23] and the algorithm for parallel trans-
lation described in this paper.

The computer experiments were carried out with
point clouds from the San Francisco Apollo-South-
Bay Dataset [24]. Each cloud in the database contains
approximately 100000 points. We use cloud subsam-
pling to approximately 10000 points per cloud. The
clouds in the dataset were obtained using a lidar
mounted on a vehicle. The vehicle moved and the sen-
sor scanned the ambient medium with a certain fre-
quency. The obtained data set consists of a sequence of
point clouds. In our experiments, the point clouds are
taken from the dataset with a step of 4, i.e., for exam-
ple, point clouds nos. 1, 5, 9, ... are considered.

The database contains information about transfor-
mation Mk mapping each cloud Ck to a certain global
coordinate system. Matrix Mk has dimensions of 4 by
4 and specifies a rigid transformation in homogeneous
coordinates. The transformation mapping cloud Ci to
the coordinate system of cloud CJ is specified by
matrix Mji_true = (Mj)–1Mi.

The experiments are organized as follows. Point
cloud number k is fixed in the database. The point
clouds with numbers k, k + 4, k + 8, ...k + 4 × 99 are
considered. For all successive pairs of clouds (k + 4i,
k + 4(i + 1)), i = 0, ..., 98, we find transformation
(Rk + 4i, k + 4(i + 1), Tk + 4i, k + 4(i + 1)) mapping cloud
Ck + 4(i + 1) to the coordinate system of cloud Ck + 4i and
transformation (Rk + 4(i + 1), k + 4i, Tk + 4(i + 1), k + 4i) map-
ping cloud Ck + 4i to the coordinate system of cloud
Ck + 4(i + 1) using the point-to-point ICP algorithm.
Note that before the use of the ICP algorithm we apply
to the reference cloud the coarse alignment algorithm,
which means applying to this cloud the transformation
obtained for the previous pair of clouds. The trans-
forms relating clouds, the numbers of which differ by
more than 4, are calculated using the superposition of
intermediate transforms with respect to R and T,
respectively.

In this paper, the following quality parameters of
global refining algorithms are used. Parameter last_R =

, where R(first, last)_true and
R(first, last)_est are the true and estimated transforms
mapping the last considered cloud to the coordinate
system of the first cloud, shows the global error of 3D
scene reconstruction. Parameter last_T is defined
similarly. Parameters avg_R and avg_T show the aver-
age errors with respect to R and T, respectively.
Parameters max_R and max_T show the maximum
errors. Figure 2 and Tables 1 and 2 show the operation
accuracy of the GR_ICP, GR, and GR_Q algorithms
for a series of clouds with the origin in cloud no. 1.

Figure 3 and Tables 3 and 4 show the operation
accuracy of the GR_ICP, GR, and GR_Q algorithms
for a series of clouds with the origin in cloud no. 501.

2
(first, last)_true (first, last)_est L

R R−
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Fig. 2. Result of 3D scene formation by different algorithms: (a) GR_ICP (dark gray color); (b) GR (light gray color); and
(c) GR_Q (gray color). The correctly formed 3D scene is marked by black color.

(a) (b) (c)

Fig. 3. Result of 3D scene formation by different algorithms: (a) GR_ICP (dark gray color); (b) GR (light gray color); and
(c) GR_Q (gray color). The correctly formed 3D scene is marked by black color.

(a) (b) (c)

Fig. 4. Result of 3D scene formation by different algorithms: (a) GR_ICP (dark gray color); (b) GR (light gray color); and
(c) GR_Q (gray color). The correctly formed 3D scene is marked by black color.

(a) (b) (c)
Figure 4 and Tables 5 and 6 show the operation
accuracy of the GR_ICP, GR, and GR_Q algorithms
for a series of clouds with the origin in cloud no. 1001.
Figure 5 and Tables 7 and 8 show the operation accu-
racy of the GR_ICP, GR, and GR_Q algorithms for a
series of clouds with the origin in cloud no. 1501.
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND

Fig. 5. Result of 3D scene formation by different algorithms: 
(c) GR_Q (gray color). The correctly formed 3D scene is marke

(a) (b)
3. CONCLUSIONS
In this paper, we use the global refining algorithm

GR for constructing a 3D scene from a set of point
clouds. The algorithm is compared with other possible
methods of solving the problem of global refining of
transformations. The accuracy of the algorithms is
 ELECTRONICS  Vol. 68  No. 12  2023

(a) GR_ICP (dark gray color); (b) GR (light gray color); and
d by black color.

(c)
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Table 5. Accuracy of calculation of rotations by the
GR_ICP, GR, and GR_Q algorithms

GR_ICP GR GR_Q

last_R 0.104861 0.0933781 0.443587
avg_R 0.0573034 0.0510654 0.195734
max_R 0.117359 0.105829 0.443587

Table 4. Accuracy of calculation of parallel translations by
the GR_ICP, GR, and GR_Q algorithms

GR_ICP GR GR_Q

last_T 55.7511 54.1935 17.2386
avg_T 27.6695 25.5408 16.1963
max_T 55.9709 54.1935 17.2544

Table 6. Accuracy of calculation of parallel translations by
the GR_ICP, GR, and GR_Q algorithms

GR_ICP GR GR_Q

last_T 92.9949 36.5377 136.19
avg_T 38.0313 12.4912 47.7568
max_T 92.9949 36.5377 136.19

Table 7. Accuracy of calculation of rotations by the
GR_ICP, GR, and GR_Q algorithms

GR_ICP GR GR_Q

last_R 0.108476 0.0784722 1.13145
avg_R 0.057009 0.0474452 0.164958
max_R 0.108679 0.0835886 1.13145

Table 8. Accuracy of calculation of parallel translations by
the GR_ICP, GR, and GR_Q algorithms

GR_ICP GR GR_Q

last_T 579.766 131.92 126.563
avg_T 164.922 124.399 123.483
max_T 579.766 136.542 136.57
estimated using quality criteria that correspond to
visual perception of the result accuracy. Computer
simulation demonstrates efficiency of the proposed
algorithm.
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