Skip to main content
Log in

Measuring Devices Based on Molecular-Electronic Transducers

  • REVIEW
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The basic principles of operation of the sensors based on molecular-electronic transducers (METs) are described. The review of investigations of physical processes into MET and their operating characteristics are considered. Modern MET manufacturing technologies and the production methods and the new applications of planar microelectronic METs are discussed. An overview of devices and systems based on the METs is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Introduction to Molecular Electronics, Ed. by N.S. Lidorenko (Energoatomizdat, Moscow, 1984) [in Russian].

    Google Scholar 

  2. V. S. Borovkov, B. M. Grafov, E. M. Dobrynin, et al., Electrochemical Transducers of Primary Information, Ed. by E. M. Dobrynin and P. D. Lukovtsev (Mashinostroenie, Moscow, 1969) [in Russian].

    Google Scholar 

  3. J. Newman and K. E. Thomas-Alyea, Electrochemical Systems (Wiley, Hoboken, 2004).

    Google Scholar 

  4. C. W. Larkam, J. Acoust. Soc. Am. 37, 664 (1965).

    Article  Google Scholar 

  5. V. M. Agafonov, V. G. Krishtop, and M. V. Safonov, Nano & Mikrosist. Tekh. 5 (6), 47 (2010).

    Google Scholar 

  6. A. S. Bugaev, V. M. Agafonov, V. G. Krishtop, A. N. Antonov and V. S. Veretin, “Seismic sensors for oil and gas complex on the molecular-electronics transduction in the solid state and liquid microsystems,” Oil & Gas Field Engineering, Special Issue No. 3: Results of 2012, 46–52 (2013) Issue, Results.

  7. V. M. Agafonov, V. G. Krishtop, and I. V. Egorov, Devices & Syst. of Explor. Geophys. 43 (1), 39 (2013).

    Google Scholar 

  8. V. G. Krishtop, V. M. Agafonov, and A. S. Bugaev, Russ. J. Electrochem. 48, 746 (2012).

    Article  Google Scholar 

  9. I. S. Zakharov, V. A. Kozlov, and M. V. Safonov, Izv. Vyssh. Uchebn. Zaved., Elektron. No. 2, 40 (2003).

    Google Scholar 

  10. I. S. Zakharov and V. A. Kozlov, Russ. J. Electrochem. 39, 397 (2003).

    Article  Google Scholar 

  11. V. M. Agafonov and V. G. Krishtop, Mikrosistem. Tekh., No. 9, 40 (2004).

  12. V. M. Agafonov and V. G. Krishtop, Russ. J. Electrochem. 40, 537 (2004).

    Article  Google Scholar 

  13. V. A. Kozlov and P. A. Tugaev, Russ. J. Electrochem. 32, 1325 (1996).

    Google Scholar 

  14. A. V. Babanin, V. A. Kozlov, and N. V. Pet’kin, Russ. J. Electrochem. 26, 601 (1990).

    Google Scholar 

  15. V. A. Kozlov, A.S. Korshak, and N. V. Pet’kin, Russ. J. Electrochem. 27 (1), 25 (1991).

    Google Scholar 

  16. I. S. Zakharov, Russ. J. Electrochem. 40, 626 (2004).

  17. V. A. Kozlov and D. A. Terent’ev, Russ. J. Electrochem. 39, 401 (2003).

    Article  Google Scholar 

  18. V. A. Kozlov and D. A. Terent’ev, Russ. J. Electrochem. 38, 992 (2002).

    Article  Google Scholar 

  19. V. A. Kozlov and M. V. Safonov, Russ. J. Electrochem. 40, 460 (2004).

    Article  Google Scholar 

  20. I. S. Zakharov, Avtonom. Energetika, No. 15, 36 (2003).

    Google Scholar 

  21. I. S. Zakharov, Avtonom. Energetika, No. 13, 23 (2002).

    Google Scholar 

  22. V. M. Agafonov and A. A. Orel, Nano & Mikrosist. Tekh., No. 5, 50 (2008).

  23. V. M. Agafonov, A. S. Bugaev, and A. A. Orel, Nano & Mikrosist. Tekh., No. 5, 32 (2009).

  24. V. M. Volgin and A. D. Davydov, Russ. J. Electrochem. 48, 565 (2012).

    Article  Google Scholar 

  25. M. R. Vyaselev, A. G. Miftakhov, and E. I. Sultanov, Russ. J. Electrochem. 38, 208 (2002).

    Article  Google Scholar 

  26. M. V. Safonov, Issledovano v Rossii, 2433 (2004), [Elektron. Zh.]. http://zhurnal.ape.relarn.ru/articles/2004/228.pdf.

  27. D. A. Bograchev and A. D. Davydov, Electrochim. Acta 47 (20), 3277 (2002).

    Article  Google Scholar 

  28. B. M. Grafov, Russ. J. Electrochem. 3, 935 (1967).

    Google Scholar 

  29. N. S. Lidorenko, Elektrotekhnika, No. 3, 13 (1965).

  30. S. A. Martem’yanov, M. A. Vorotyntsev, and B. M. Grafov, Russ. J. Electrochem. 16, 714 (1979).

    Google Scholar 

  31. A. P. Grigin, B. I. Il’in, and N. V. Pet’kin, Russ. J. Electrochem. 15, 1 (1980).

    Google Scholar 

  32. V. A. Kozlov and D. A. Terent’ev, Mikrosistem. Tekh., No. 10, 41 (2004).

  33. E. Ya. Klimenkov, B. M. Grafov, V. G. Levich, and I. V. Strizhevskii, Russ. J. Electrochem. 5, 202 (1969).

    Google Scholar 

  34. V. G. Krishtop and A. S. Shabalina, in Proc. XLVI Sci. Conf. MIPT, Dolgoprudnyi, 2003 (MIPT, Dolgoprudnyi, 2003), p. 43.

  35. V. A. Kozlov and K. A. Sakharov, Basic Physics of Fluid and Solid-State Measuring Systems and Information-Processing Devices (MIPT, Moscow, 1994), p. 37.

    Google Scholar 

  36. M. V. Safonov, Convection Diffusion and Noise in Molecular-Electronic Structures, Cand. Sci. (Phys. Math.) Dissertation (MIPT, Dolgoprudnyi, 2007).

  37. V. A. Kozlov and M. V. Safonov, Tech. Phys. 48, 1579 (2003).

    Article  Google Scholar 

  38. D. L. Zaitsev, P. V. Dudkin, and V. M. Agafonov, Izv. Vyssh. Uchebn. Zaved., Elektron., No. 5, 61 (2006).

  39. D. L. Zaitsev and P. V. Dudkin, Avtonom. Energetika, No. 19, 62 (2005).

    Google Scholar 

  40. V. A. Kozlov, V. M. Agafonov, D. L. Zaitsev, and M. V. Safonov, RF Patent No. 2394246 Byull. Izobret., No. 19 (July 10, 2008).

  41. Yu. V. Klyus and M. V. Safonov, in Contemporary Problems of Fundamental and Applied Sciences (Proc. XLIX Sci. Conf. MIPT, Moskva–Dolgoprudnyi, 2006 (MIPT, Dolgoprudnyi, 2006), p. 100.

  42. E. V. Egorov, I. V. Egorov, and V. M. Agafonov, J. Sensors 2015 ID 512645 (2015).

  43. V. M. Agafonov and D. L. Zaitsev, Tech. Phys. 55, 130 (2010).

    Article  Google Scholar 

  44. http://www.r-sensors.ru.

  45. V. M. Agafonov, I. V. Egorov, and A. S. Shabalina, Seismic Instruments 49, 5 (2013).

    Google Scholar 

  46. E. Son, V. Agafonov, A. Bugaev, and V. Krishtop, in Proc. ASME 2nd Micro/Nanoscale Heat & Mass Transfer Int. Conf. (MNHMT 2009), Shanghai, China, Dec. 18–21, 2009 (Am. Soc. Mech. Engineers, New York, 2009).

  47. I. P. Kasperovich and V. G. Krishtop, in Components of Domestic Radio Electronics (Proc. 1st Russian-Byelorussian Sci.-Tech. Conf., Nizhny Novgorod, Sep. 11–14, 2013) (Popov RNTO RES, Moscow, 2013), Vol. 1, p. 28.

  48. A. S. Bugaev, V. M. Agafonov, M. S. Khairetdinov, and V. V. Kovalevskii, in Nigmatullin’s Readings (Proc. Int. Sci.-Tech. Conf., Kazan, Nov. 19–21, 2013) (Kazan. Gos. Tekh. Univ., Kazan’, 2013), p. 213.

  49. V. M. Agafonov, A. S. Bugaev, V. G. Krishtop, et al., in Actual Problems in Geosciences (Proc. Russian-Polish Workshop, Oct. 15–16, 2008 (Schmidt Inst. of the Earth Physics, RAS, Shirshov Inst. of Oceanology, RAS, Moscow, 2008), p. 15.

  50. A. S. Shabalina and V. G. Krishtop, “The precision seismometer based on planar molecular-electronic transducers,” in Nigmatullin’s Readings (Proc. Int. Sci.-Tech. Conf., Kazan, Nov. 19–21, 2013) (Kazan. Gos. Tekh. Univ., Kazan’, 2013), p. 183.

  51. J. Peterson, Observation and Modeling of Seismic Background Noise. Open File Report, 93–322 (Albuquerque: US Dept. of Interior Geological Survey, Albuquerque 1993). https://pubs.er.usgs.gov/publication/ofr93322.

    Google Scholar 

  52. E. Wielandt, The New Manual of Seismological Observatory Practice (NMSOP-2), Ed. by P. Bormann (Deutsces GeoForshung Centrum GZF, Potsdam, 2012), Ch. 5. http://gfzpublic.gfz-potsdam.de/pubman/item/ escidoc:56076:4/component/escidoc:61055/Chapter_5_ rev1.pdf.

    Google Scholar 

  53. Programm for Array Seysmic Studies of the Continental Lithosphere (PASSCAL). N.Y.: Incorporate Research Institution for Seismology (IRIS), 2008). https:// www.iris.edu/hq/files/publications/passcal_review.pdf.

  54. M. E. Templeton, IRIS Library of Nominal Response for Seismic Instruments. Incorporated Research Institutions for Seismology. Dataset (IRIS, Washinghton, 2017). https://doi.org/. doi 10.17611/S7159Q

  55. I. Koulakov, K. Jaxybulatov, N. M. Shapiro, et al., J. Volcanology & Geothermal Res. 285, 36 (2014).

    Article  Google Scholar 

  56. A. F. Kolos and D. V. Kryukovskii, Izv. Peterburg. Gos. Univ. Putei Soobshch., No. 2, 120 (2013).

  57. J. M. Akris and A. T. Sambas, Bollettino di Geofisica Teorica ed Applicata 55, 561 (2014).

    Google Scholar 

  58. J. Papoulia, J. Makris, D. Ilinski, et al., in Proc. 9th Hellenic Symp. of Oceanography and Fisherie, Patra, May 13–16, 2009 (Hellenic Center for Marine Research, Athens, 2009), Vol. 1.

  59. J. Papoulia, R. Nicolich, J. Makris, et al., Bollettino di Geofisica Teorica ed Applicata 55, 405 (2014).

    Google Scholar 

  60. D. G. Levchenko, Seismic Instruments 45 (4), 5 (2009).

    Google Scholar 

  61. D. G. Levchenko, Recording of Broadband Seismic Signals and Possible Strong Foreshocks on the Bottom of the Sea (Nauchnyi Mir, Moscow, 2005).

    Google Scholar 

  62. http://eqru.gsras.ru/stations/index.php?inc=netlist.

  63. V. G. Korostelev, L. M. Savatyugin, and V. N. Smirnov, Problemy Arktiki i Antarktiki, No. 3 (101), 69 (2014).

    Google Scholar 

  64. V. A. Kozlov, Achievements of Modern Radioelectronics, Nos. 5–6, 138 (2004).

  65. A. S. Shabalina, D. L. Zaitsev, E. V. Egorov, et al. Achievements of Modern Radioelectronics, No. 9, 33 (2014).

  66. http://www.seismotronics.ru.

  67. http://www.nordlab.com.

  68. D. Zaitsev, V. Agafonov, E. Egorov, and A. Antonov, and A. Shabalina, Sensors., No. 11, 29378 (2015).

  69. E. V. Egorov, V. A. Kozlov, and A. V. Yashkin, Russ. J. Electrochem. 43, No. 12, 1358 (2007).

    Article  Google Scholar 

  70. V. A. Kozlov and M. V. Safonov, Russ. J. Electrochem. 40, 460 (2004).

    Article  Google Scholar 

  71. V. M. Agafonov and A. S. Nesterov, Russ. J. Electrochem. 41, 880 (2005).

    Article  Google Scholar 

  72. V. G. Krishtop, Russ. J. Electrochem. 50, 350 (2014).

    Article  Google Scholar 

  73. V. M. Agafonov, K. A. Afanas’ev, A. N. Nikolaev, and A. V. Yashkin, Novye Prom. Tekhnol., No. 6, 68 (2010).

  74. http://www.rotational-seismology.org/.

  75. W. H. K. Lee, H. Igel, and M. D. Trifunac, Seismological Research Lett. 80, 479 (2009).

    Article  Google Scholar 

  76. W. H. K. Lee, J. R Evans, B.-S. Huang, et al. The New Manual of Seismological Observatory Practice (NMSOP-2), Ed. by P. Bormann (Deutsces GeoForshung Centrum GZF, Potsdam, 2012). http://gfzpublic.gfz-potsdam.de/ pubman/item/escidoc:43316:3/component/escidoc:56116/ IS_ 5.3_rev1.pdf.

    Google Scholar 

  77. A. M. Agafonov, E. V. Egorov, D. L. Zaitsev, et al., Giroskopiya i Navigatsiya, No. 3 (70), 14 (2010).

    Google Scholar 

  78. A. M. Agafonov, E. V. Egorov, and D. L. Zaitsev, Giroskopiya i Navigatsiya, No. 1(68), 72 (2010).

  79. A. Neeshpapa, A. Antonov, and V. Agafonov, Sensors 15, 365 (2015).

    Article  Google Scholar 

  80. A. N. Antonov and D. L. Zaitsev, Giroskopiya i Navigatsiya, No. 2(69), 63 (2010).

  81. D. L. Zaitsev and A. M. Panteleev, Giroskopiya i Navigatsiya, No. 2(65), 103 (2009).

  82. N. Kapustian, G. Antonovskaya, V. Agafonov, et al., Seismic Behaviour and Design of Irregular and Complex Civil Structures, Ed. by M. De Lavan, M. De Lavan, (Springer-Verlag, Dordrecht, 2013), p. 353.

    Google Scholar 

  83. N. K. Kapustyan, G. N. Antonovskaya, and A. N. Klimov, “Monitoring of high-rise buildings as an important asset for the construction design,” Zhilishchnoe Stroitel’stvo (Housing Construction), No. 11, 6 (2013).

  84. A. M. Agafonov, K. A. Afanas’ev, and A. V. Yashkin, Proc. of MIPT 5 (2/18), 142 (2013).

  85. V. A. Kozlov, V. M. Agafonov, and P. V. Dudkin, in System Problem of Reliability, Quality, Information and Electronic Technologies (Proc. Int. Sci.-Tech. Conf., Moscow, Oct. 3–14, 2005) (Radio i Svyaz’, Moscow, 2005), p. 142.

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 18-07-01162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Krishtop.

Additional information

Translated by S. Rodikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugaev, A.S., Antonov, A.N., Agafonov, B.M. et al. Measuring Devices Based on Molecular-Electronic Transducers. J. Commun. Technol. Electron. 63, 1339–1351 (2018). https://doi.org/10.1134/S1064226918110025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226918110025

Navigation