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Abstract—Crisis processes of biosystems often develop according to scenarios of rapid collapse, which cannot
be predicted by statistical methods. This paper develops a method for constructing hybrid computational
models using event-hierarchy representation for biophysical processes. System events calculated by the algo-
rithm change the order of calculation of equations according to a given set of rules. The rules of physically
conditioned redefinition of the right-hand sides of differential equations are used. The predicates employ the
calculations of a group of accompanying characteristics, which are an integral part of the controlled biophys-
ical dynamics. The model is investigated by presenting a computational scenario with a set of parameters, ini-
tial values, and an algorithm for making decisions about changing the impact for discrete time. Using com-
putational experiments, a real outcome scenario for a situation that leads to the collapse of a biophysical sys-
tem at a controlled level of exposure is described. The scenario sets the logic for making control decisions to
change the level of external pressure on the natural environment. It is shown as a result of modeling that the
transition of the process to an oscillatory mode leads to the choice of a risky control mode. It has been estab-
lished that the dynamics of many real water populations has a point of threshold reduction in the efficiency
of replenishment of stocks. The model scenario uses transformations of the phase portrait of iterations,
which, in the presence of disconnected boundaries of the areas of attraction of alternative attractors and a
strange chaotic repeller, lead to the uncertainty effects arising due to chaotic modes in a deterministic model.
The properties of the described model scenario with a chaotic regime of dynamics are confirmed by the exam-
ple of the catch of oceanic species of crustaceans.
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hierarchical time with interruptions, collapse scenarios, stability limits, transient chaos, types of attractors,
reverse bifurcations
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INTRODUCTION

Due to unforeseen perturbations, the problems of
regulating biophysical processes become even more
difficult, and so the development of computational
methods for analyzing the nonlinearity of situations
with a description of the logic of the impact is relevant.
Evolutionarily settled modes of functioning of trophic
chains, which include regular cycles of populations,
are destroyed without maintaining species diversity.
Excessive exploitation of economically valuable popu-
lations violates the regulatory mechanisms that main-
tain the balance of the ratio of species in the commu-
nity, which leads to the expansion of the ranges of spe-
cies that are useless for fishing and the occupation of
the ecological niche by harmful invaders. Aquatic eco-
systems turn out to be unbalanced. Features for the
problems of control of a competitive biophysical envi-
ronment are created not only by a rapidly changing
volatile environment, but also by the adaptive nature

of the reproduction process in communities with
strong concurrence.

For the optimal control of biosystems, various
mathematical approaches were proposed, which are
based on the principles of physical modeling of events
by analogy with models of phase transitions. For living
systems, methods taking the random effects of the
environment into account [1], as well as dynamic pro-
gramming and the theory of monotone operators [2],
were used. Most authors assumed the main task to lie
in improving the rules for the distribution of quotas
[3]. The problem is complicated by the factors of
migration and variability of the spatial distribution of
populations [4]. As has been noted by many authors
[5], intense fishing, due to selectivity both in terms of
the timing of the catch and in terms of the size of indi-
viduals, affects the biophysical properties and genetic
diversity of the individuals that make up the popula-
tion. The selective action to eliminate fast-growing
individuals changes the average parameters of growth
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and fertility. These are the characteristics responsible
for the success of the reproductive cycle.

Elaborating a universal model for choosing the
optimal (from the point of view of profit) and reliable
strategy for long-term fishing will be an insoluble
problem for a long time. Errors during optimization
entail the phenomenon of structural collapse, which
must be determined in a timely manner by character-
istic features. Optimization according to the theory of
maximum sustainable yield, which is implemented
over an indefinite period of time in the practice of its
application carries a risk both for populations and for
the economy of regions [6]. The collapse of supplies
means a long cessation of fishing and depression of the
economy [7]. Regulated fishing leads to unexpected
degradation of bioresources quite often [8]. The diffi-
culty lies in the fact that the key signs of dynamics in
crisis situations are diverse [9]. The object of control in
this case is a complex biophysical system with nonlin-
ear threshold effects in the regulation of its internal
physical and chemical processes.

The purpose of the work is to develop a scenario
approach to the study of nonlinear phenomena for
controlled biophysical systems based on the discrete
component of the trajectory of the model obtained
using tunable differential equations. A computational
model was developed with the inclusion of the vari-
ability of generational survival factors according to the
principles of ontogenetic development stages, which
are event-dependent on the growth rate of individuals
in the population. The novelty of the model construc-
tion method is in the formalization of different types
of events with respect to time. The novelty of the
model analysis with influence is in the comparative
evaluation of computational scenarios when choosing
one of the valid control logic options. The key idea of
the analysis is the assessment of a given situation with
options for its occurrence with different algorithms for
changing the impact.

The algorithmically formalized logic of changing
the impact, together with a set of parameters and cer-
tain initial conditions of the equations, will constitute
an original interpretation of the model situation under
consideration. The practical part of the work includes
a scenario analysis based on catch statistics for a spe-
cial situation that ended with a rapid commercial deg-
radation of the population of the Paralithodes
camtschaticus crab in the Gulf of Alaska.

1. FORMALIZATION OF HIERARCHICAL 
CONTINUOUS TIME WITH EVENTS

The technique of organizing rearrangements in the
calculation of equations is required for modeling many
specific problems [9]. To adapt the scenario methods
to the real process, it is necessary to represent the
model time as a sequence of tuples to determine the
sequence of these reswitches. Points in time for events
that lead to rearrangements in a system of continuous
equations can be defined in different ways—explicitly
or indirectly—since biological problems are specific
and biosystem processes develop variably. Currently,
“hybrid models” is a broad and interdisciplinary term
[11]. A more precise and narrower definition needs to
be given. For our purposes, the term “a predictive
computational structure with an event type of time” is
more accurate. Various authors have used the term
“hybrid systems” to refer to many structures that are
different and have dissimilar properties for numerical
calculations. In the context of dynamically redefined
systems, we can talk about discontinuous nonlineari-
ties or glued calculations. The form of visualization of
such a continuous-discrete structure is the formalism
of hybrid automata, as extensions of directed graphs.
Graph vertices correspond to state-change modes,
and edges correspond to transitions between alterna-
tive state-change modes (but not between states them-
selves) specified by the conditions of Boolean func-
tions. A specific hybrid automaton can be a nested ele-
ment for a higher-order aggregated automaton in the
process hierarchy of a heterogeneous system [12].

For practical problems of ecology, it is necessary to
introduce additional conditions into the models for
the start and end of the action of factors, since the
course of processes can change abruptly due to a small
perturbation of the conditions: the rate of decomposi-
tion of organic matter in eutrophic lakes changes dra-
matically with an increase in temperature [13]. More
often, abrupt changes are not expressed by a shift in
the values of a set of indicators in a tabular function,
but affect the form of nonlinearity in their regulation.
Completely continuous models of the age structure of
populations [14] are not suitable for commercial spe-
cies of fish and crabs, for which f luctuations in juve-
nile mortality are significant. For the trophic chain in
continuous models, cascades of period doubling bifur-
cations arise [15], but complicating the behavior is not
our task.

The composing of continuous segments or time
frames can be algorithmically implemented in various
formats, and there is no universal method for building
a model with dynamic rebuilds. In biological models,
discontinuity is required to describe both structural
and qualitative changes. One can choose redefinitions
that are strictly required, algorithmically predefined
on the timeline, or optional. It is allowable to take
advantage of the random consequences of other pro-
cesses, as in the presentation of an antigen in the first
phase of the immune response. Reconstructing and
choosing an alternative equation in our model will
become necessary with a special ratio of the calculated
values: we will evaluate these points in the state space
as special points.

For such tasks, several different time formats with a
continuous and discrete component are used. For this
problem, we will choose an interpretation that is con-
TECHNICAL PHYSICS  Vol. 67  No. 6  2022
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venient for modeling the logic of the process and
studying the model situation of fishing in a series of
comparative computational experiments with a pred-
icatively changed form of influence. Let us set a life
cycle of standard length T. In an aquatic organism
(fish or crustaceans), it is accompanied by metamor-
phoses. Let us compose a partition of the life cycle of
the view with framing the hierarchy of continuous
time intervals. Inside large frames, we leave place for
numbered events ti. We formalize hybrid and “event”
time for computational experiments as a multiset of
ordered elements—tuples:

where i is the event number in the frame segment
before T and n is the current frame number in genera-
tional order. The formalism of time with two discrete
components leaves faces ∂L and ∂R both to the right
and to the left of frame number n. Faces ∂L and ∂R
between time frames, but not included in the frame in
the form of interruptions, were needed to perform
rearrangements in the system transitions selected
according to the conditions and start calculating the
dynamics of the next adjacent generation and setting
the magnitude of the impact. The task of structuring
the model time is to accurately enter the elements of
eventfulness into the control algorithm by the impact,
since t1, t2, and ti will be set from the calculations of
other entirely continuous additional variables. The
float-length time between calculated events should be
formatted into fixed frames, rather than simply to
introduce eventness without explicit framing.

The essence of manipulations with time is that such
a controlled model of the population process is formed
on the basis of a dynamically redefined system of
equations. Factors of population reduction change
sharply between the stages of ontogenetic develop-
ment, which is due to biochemical processes during
the endogenous feeding of individuals [16]. The sec-
ond idea is to establish events from the state of a set of
predicates, which will be followed by the changes in
the calculations of the state of the biophysical system.
It is then convenient to vary the control action by the
scenario logic of the computational experiment.

2. CONTINUOUS TIME FRAMING 
AND SEQUENCE OF EVENTS

For a modeling method that takes into account
biological discontinuity, we propose a computational
structure that changes according to logical rules with
three successive redefinable forms of the right side.
The value of population number N(t) in each frame
changes from N(0) = λS to R = N(T). S is the tradi-
tional designation for an adult spawning stock. Vari-
able R conveniently ref lects the replenishment of the
biophysical system. The model is formalized by a dif-
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ferential equation with a set of possible forms for the
right side supplemented by a set of predicates for
changing the calculation mode—functions with a set
of values {0; 1}. The predicate is given by a mathemat-
ical ratio of continuously changing arguments (obeys
the rules of Boolean algebra). By default, predicates
for t0 should be equal to zero, P(x, y) = 0, but for ti they
take the value P(x, y) = 1 from the state of their argu-
ments; otherwise, a loop error occurs. Arguments of
Boolean functions are variables from auxiliary calcu-
lation equations related to the dynamics of N(t).

The sequence of time intervals before the repro-
ductive age of each of the n generations is set by com-
bining time frames with a tuple for the calculated
events:

Numbered events ti in frames are ontogenetic
“interruptions.” Let us compare them with three con-
secutive forms for the right side. Let us write the equa-
tions for the reduction in the number of generations
from N(0) with three stages of ontogenetic develop-
ment up to moment T:

(1)

Here, coefficients α1 < α2 < α3 are the interpretable
parameters for juvenile mortality depending on the
size of the generation itself and β is the density-inde-
pendent loss parameter. One of the equations includes
the delay t–χ to account for the depletion of food
resources.

Three predicates P1, P2, and P3 are set the moments
of stopping the calculations of each of the three forms
of the right side, which will create conditions for the
completion of activity for the form of the right side of
the equation:

(1.1)

In (1.1), a transitional level of development wk to
exit a generation from a quadratically determined
mortality rate is used. We wrote two predicates with
logical negation: , . Events are possi-
ble if these relationships are violated. Calculation (1)
occurs with the while{1} loop algorithm until P = 1.
Predicates (1.1) must always uniquely define transi-
tions, and so their redundancy is permitted. To avoid
ambiguity, one can use additional logical variables that
change state when the transition already occurred, but
cannot be chosen again by the hybrid automaton algo-
rithm.

Compiling continuous-event time as a multiset of
elements  means that the tool environment
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algorithm considers a sequence of frames for the life-
cycle time of a separate nth generation.

Let, by definition, a frame be the standard lifetime
for a generation. There are intraframe events within
each frame with onset t0, which we denoted by index ti.
For each form of the right side at the time of the event,
the initial conditions associated with the previous cal-
culations are calculated. Since the rearrangements of
the right side of (1) occur predicatively, the current
values P1, P2, and P3 are an important element of the
model. Let us classify transitions: forms I, only by
accounting for timing t, and forms II caused by inter-
nal ratios of the calculated indicators. In the type II
transition, the change of the right side of (1) occurs
after comparing the ratios of the values of the internal
model variables. The inequalities in (1.1) are related to
the calculation of an auxiliary indicator for w(t).

The strategy of using different accompanying char-
acteristics will allow expanding the model. This is nec-
essary, since population processes are variable and
nonequilibrium even without the influence of catch-
ing. The fertility of aquatic organisms is associated
with both body mass and the growth rate of individuals
[17]. Let us find in the model the relationship between
the growth rate of juveniles and their mortality [18].
Main structure (1) for N(t) should be solved numeri-
cally in conjunction with an auxiliary indicator—size-
development index w(t) of individuals of the genera-
tion:

(2)

where δ is the correction factor and σ is fixed and
reflects the abundance of food resources.

We use calculations with R = N(T) = ϕ(N(0)) for
numerical analysis of iterations Rn+1 = ϕ(Rn). To cal-
culate the dynamics of the new (n + 1)th generation,
the initial conditions for the first equation in structure
(1) are reinitialized:

where υm is the postspawn survival index for a series of
previous m generations and S is the population of
stock ready for reproduction with average fertility λ.
A model in the Rand Model Designer environment
can be adapted for multiple generations living
together. The mathematical basis for the analysis of
the discrete part of the model trajectory will be the
theory of the occurrence of bifurcations in nonuni-
modal iterations with nonconstant Schwarzian. The
biological substantiation of the method is based on a
well-developed theory of population-replenishment
development [19]. According to the theory, several
qualitatively different types of dependence between
the stock and the efficiency of its reproduction are
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admissible. It is known from experiments that the
growth rate of surviving older individuals can sharply
increase with an increase in the density of juvenile
fish [20].

3. RIGID AND SOFT QUALITATIVE 
TRANSFORMATIONS IN THE DYNAMICS 

OF ITERATIONS

Having obtained functional dependence N(0) →
N(T) ≡ ϕ(N(0)) after numerical solution of equations
with N(0) = λS in (1), (1.1) along with (2) for biologi-
cally allowable values N(0), S ∈, one can estimate iter-
ation dynamics properties  of this depen-
dence. S is the stock population ready for reproduction
with average fertility λ. Not all changes in regulation
are threshold. It is biologically unreliable to change
the basic population characteristics abruptly. A simple
change in the parameters during rearrangements in (1)
will not solve our problems, and an increase in the
number of parameters seems problematic.

With a small population, the effect of random
unfavorable factors in the reproduction of populations
is large [21]. We developed a method for taking into
account the variability of factors in the form of a point
injection into a predicatively redefined dynamic sys-
tem (1) of trigger functions—smoothly varying coeffi-
cients Ψ(n) ≠ const for iterations  with a
limited range of their values. Trigger functions are
constant over the entire length of the frame of contin-
uous model time  and change the value
when changing the frame number: n: = n + 1. The
method is applicable in different models. When
approaching some region of the system state, the value
of Ψ will increase rapidly, but smoothly. We use this
method because the use of rebuilding with predicates
from the generation state P(N(T)) is not convincing.
We do not use the population number for unnecessary
changes in the structure of equations, since two event
rearrangements are sufficient for the description.

For the equation of the reduction of the number of
generations in (1), mortality rates are specially sepa-
rated: quadratic αN2 and linear βN. The value of w(t)
for parameter α takes into account the fast depletion of
resources needed for a development as the total bio-
mass increases. We take into account the reproduction
loss at stage t0. The effect can be sharply manifested
precisely for low density  of adults [22].
The effect of reproductive activity loss is implemented
in the model by a dynamic coefficient along with βN.
Its effect depends on value of the parent population S,
from which we calculated initial conditions N(0). The
level of the impact of Ψ has to be limited. The range of
values E(Ψ) on the right has a finite limit, and then our
soft switch Ψ does not interfere with the calculations.
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TECHNICAL PHYSICS  Vol. 67  No. 6  2022



MODELING OF A CRISIS IN THE BIOPHYSICAL PROCESS 527

Fig. 1. Dynamics of collapse of crab stock off the coast of
Alaska in 1985 from [26].
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This will allow us to implement a smooth shutdown of
the negative factor:

(3)

where parameter ζ < 1 reflects the threshold-effect
significance level. Using this method, we took into
account smooth changes in regulation, while in the
hybrid system we described hard and threshold
changes in the dynamics of the decrease in the number
of juveniles. Threshold effects manifest themselves not
only in controlled population dynamics, but also
affect many biological processes, such as the develop-
ment of an immune response and the development
and treatment of cancer [23].

4. SITUATION OF A TYPICAL COLLAPSE
OF THE COMMERCIAL POPULATION 

OF AQUATIC ORGANISMS
Several extreme variants of development for popu-

lation dynamics are known. Some of these processes
are associated with crises, such as the bottleneck
effect, and others with rapid population explosions.
System control in the mode of abrupt eruptive changes
is an unrealizable task. Often a crisis can be foreseen,
but the degradation of bioresources does not always
occur gradually, but often in the form of a collapse.

The main assertion that we want to emphasize in
the article is that a sharp collapse is fundamentally dif-
ferent from the systematic and monotonous depletion
of reserves from the point of view of the theory of
dynamical systems. The disappearance of commercial
stocks of the Atlantic cod Gadus morhua off the coast
of North America created a devastating effect with
economic consequences due to the instant cessation of
fishing and without recovery [24]. Since 1992, special
expert commissions and monitoring organizations
have discussed the situation with cod degradation.
Errors in the regulation of fisheries, unreliability of
stock estimates, error in methods and selectivity of
harvesting, and accompanying natural factors—
warming ocean currents—were noted. Ichthyological
commissions have not reached a consensus on the rea-
sons for the collapse; moreover, they are not clear why
there was no quick recovery after the moratorium.
Contradictions in expert assessments always arise
when there are several materially interested groups
among experts, which is also a hidden problem of the
expert control method. For the case of cod collapse,
we proposed a model [25], in which the situation
developed after the loss of unstable equilibrium, and
the main unaccounted-for factor was increased can-
nibalism of cod with an abundance of its own juve-
niles. Unstable equilibria x* for iterations arise after a
tangent bifurcation. Since, in this case, the stability
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criterion  differs slightly from the bifurcation
 = 1; then, the trajectory can stay in their vicin-

ity for quite a long time. In some cases, x* can retain
stability even at critical condition . The
model can be improved for other cases of degradation
by changing the topology of the boundaries of the
attraction regions of attractors.

Previously, there were several situations of collapse
of the fishery of large predators with different dynam-
ics, but not all collapse events have attracted general
attention. Many failures can be attributed to random-
nicity. The cod crisis off the coast of Labrador was
long regarded as unique in commercial ichthyology.
We will give another not very well-known example
that is interesting from the point of view of the prob-
lem of managing adaptive biosystems for modeling the
dynamics of degradation of valuable stores. Figure 1
shows data on the collapse of the king crab stock near
the Aleutian Peninsula and neighboring islands in the
Pacific Ocean in 1985. In this case, fishing was also
carried out that was regulated by quotas and selective
in terms of the size of the individuals taken [26]. The
crab harvest peaked in 1966. In the scenario, the time
to collapse was much longer than in the case of cod off
the coast of Labrador, where the time interval from
peak to eventual collapse and complete moratorium
on fishing took 14 years. The economic losses in the
two situations are comparable, and a temporary pre-
cautionary moratorium was logical in both cases, but
no such decision was made. Experts often do not make
the necessary decisions in time when such decisions
would entail recognizing that their previously chosen
strategy was incorrect. A typical example is the much-
criticized delay in declaring a COVID-19 pandemic in
2020 by the World Health Organization.

The graph shows two sharp drops in the dynamics
of crab catches in million pounds. This is due to a
decrease in stock S. Between the crises, 18 years of

ϕ '( *)x
ϕ '( *)x

ϕ ='( *) 1x
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active removal of individuals passed. In the scenario
model, instead of the mass, it is expedient to calculate
the number of individuals Yn withdrawn from stock S
during the fishing season. The situation of crab col-
lapse is theoretically more interesting, since a strong
oscillatory mode of stock abundance between the first
and final crisis of the fishery is obvious. For cod, pseu-
dostabilization was observed. The scenario of the
depletion of the king crab population differs from the
dynamics of the cod crisis precisely by oscillating phe-
nomena. It was difficult for statisticians to foresee a
rapid collapse and understand its causes. The cod
Gadus morhua and the crab Paralithodes camtschaticus
are long-lived large predators. It was believed that such
species could not collapse. Collapse is common in
species such as anchovies, but Peruvian anchovies
always recover.

5. ANALYSIS OF THE PROPERTIES 
OF A NONLINEAR COMPUTATIONAL MODEL

The obtained numerical solution of the model with
the calculated N(T) we use in the form of functional
iterations: Rn+1 = ϕ(Rn) – qnRn , where q ∈ [0,1) is set
as a fraction of commercial withdrawal. When manag-
ing the fishery, the value of q is set by experts for each
year n. Initial fertility λ of the species is an important
parameter for scenarios.

In the phase plane of iterations, we obtain the sep-
aration of the set of available starting points R0 of tra-
jectories by one repeller point. So, iterations will
obtain two areas of attraction for two “competing”
attractors. Dependence ϕ will have more than one
maximum, but, for us, the position of first maximum
Rmax from the origin, as well as local minimum Rmin, is
important (Rmin > Rmax) with the meaningful property

. Thus, two conditions of Singer’s the-
orem [27] for a nonunimodal function, which are nec-
essary to implement the scenario of transition to a
global chaotic attractor through a cascade of bifurca-
tions of cycle period doubling, are not satisfied. With
a smooth change in parameter λ of such a model, two
alternative cycles of an even period will arise, p = 2.
As we noted, the Feigenbaum scenario is not relevant
in this problem. It is known that doubling bifurcations
p = 2i + 1 arise in different iterative models of popula-
tions. Chaotization of the trajectory through the bifur-
cation cascade can be obtained in iterations for the
Ricoeur model, , and in the

Shepard model, , z > 2. The
bifurcation parameters of these models have opposite
meanings: the reproductive potential a and environ-
mental-resistance factor z. The addition of q, xn + 1 =

 – qxn for a = e2 + ε induces an opposite bifur-
cation p = 2i – 1. This is a consequence of the generality
of the mechanism of formation of the Cantor attractor

ϕ >max min( )R R

−
+ = > 2

1 ,nbx
n nx ax e a e

( )+ = +1 max/1 / z
n n nx ax x S

− nbx
nax e
in the renormalization theory and has no biological
interpretation. Fractal asymptotic subsets of iterations
in biology are often difficult to interpret.

The set of descriptive means of the dynamics of
iterations is wide, but limited. For iterations Rn + 1 =
ϕ(Rn), three topological forms of attractors are avail-
able: a finite period cycle or equilibrium point x* =
ϕ(x*), an attractor similar to the Cantor set, and an
interval attractor, in the form of a conjugation of an
infinite set of segments. For iterations taking
into account the changing external perturbation xn =
f(xn – 1) ± Θ(n), there are three types of bifurcations—
rearrangements, type, and number of attractors—
which can be direct or inverse. Attractors other than
cycles can instantly lose their invariance property
f(Λ) ∈ Λ, which depends on the position of their
attraction region  near the boundary . The attrac-
tor can be separated into parts or intersect with
the boundary  of its area of attraction

.

6. SCENARIO WITH REFLEXIVE CONTROL 
UNDER THE FINAL COLLAPSE

Let us analyze the properties of the collapse sce-
nario in an experiment with the logic of managing
commercial withdrawals qn. We will formulate the
logic of changing control action q for the scenario in
the following rules corresponding to criteria adopted
in the 1980s:

For the mathematical implementation of such a
degradation scenario of two stages (as in Fig. 1) , we
propose a scenario with two metamorphoses in the
dynamics of iterations. For this purpose, it is necessary
to obtain the dependence when solving three glued
Cauchy problems with four nontrivial stationary states

 with the condition .
We implement the first metamorphosis by

smoothly increasing the share of removal q, which will
cause a reverse tangent bifurcation for  merging of
stable and unstable equilibrium, causing the loss of the
most attractional equilibrium state. For the necessary
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Fig. 2. Transformation of extrema and nontrivial equilibria in functional dependence ϕ(λS): (a) in the case minϕ(R) < ,
maxϕ(R) > ; (b) in the case minϕ(R) > , maxϕ(R) >  > .
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reconstruction of the phase portrait, it is necessary to
have three unstable stationary points while maintain-
ing the stability of the zero equilibrium. The event-
redefinable system of Eqs. (1) and (2) scales the final
dependence along the S axis in computational scenar-
ios. It is relevant to purposefully change the positions
of extrema ϕ(R), as shown in Fig. 2 (curves of the
model dependence relative to the bisector of the coor-
dinate angle), due to external conditions. Trigger-
function  does not change the relative position for of
fourth stable equilibrium , but acts on position
minϕ(R) relative to precritical unstable repeller  An
important property for the projections of the extre-
mum points of the local maximum and minimum is
the inequality ϕ(Rmax) > Rmin : ϕ, which displays the
maximum always to the right of the minimum.

The second metamorphosis of the phase portrait of
our iterations is the boundary crisis of the interval
attractor, which remains after the merging of stable
and unstable equilibria. The effect occurs upon con-
tact with the boundary of its own area of attraction.
Let there be a neighborhood of a local maximum
where the value of ϕ slightly exceeds the value of ϕ at
the point of the third repeller: ϕ(maxϕ(N(0)) ±

 Here, the initial position of trajectory point
R0 <  corresponds to the subset from the interval:

In the implementation of this scenario, through a
short regime that is indistinguishable from stochastic
fluctuations, the model crab population will reach a
level of high stable abundance in a finite number of

steps:  We denote by  the
total set of preimage points of second repeller . The
specified points as preimages are excluded from the
area of attraction of attractors, and they are never
attracted to attractors. If direct preimages are accessi-
ble for  both to the right and to the left of the point,

Ψ
4*R
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this will make the interval attraction domain –
disconnected. In the model, repeller  exists in all
scenarios and always has preimages on both the right
and left. Points  may disappear after the reverse
tangent bifurcation. Similarly, point  for ϕ exists in
all scenarios, but the preimage for the first repeller
depends on the action of soft trigger Ψ.

Let us compose a set of parameters for a computa-
tional experiment for a situation in which the com-
mercial crab population, after an unstable existence,
has recovered to a stable equilibrium and is optimal for
its food supply. The basis for the evaluation will be a
model season of 12 model months. Crab catches Y =
Rnqn without forcing fishing capacity are increasing.
After a spontaneous increase in the volume of catch to
the historical record Y → max, experts make a justified
decision to raise the annual quota, . It is
quite logical that the catches of crab for the first four
seasons after the increase in withdrawals show histori-
cally record values for the fishery. After three success-
ful seasons, catches drop sharply.

The volumes of commercial stocks of crab bypass
the local minimum of the reproduction curve ϕ,
avoiding falling into the ε-vicinity of critical state .

According to the current statistical methodology,
the forecasts of experts have taken into account the
high efficiency of crab reproduction in the previous
5 years. It appears to statisticians that, after the first
fall, the catches start to return to their former volumes.
For experts, there is no reason to adjust the manage-
ment of the fishery in order to reduce share q of with-
drawals.

The duration of growth in catch volume Y after the
minimum is associated with volatility effects. After an
increase in the fishing intensity, the value of stock Sn
breaks into an aperiodic mode, but in a limited range
of values. Experts can see f luctuations not around the
rest point, but more like regular stochastic f luctua-
tions caused by the instability of environmental condi-
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Fig. 3. A computational scenario of catch dynamics in a
stock-collapse situation.
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tions. The decision to minimize the share of with-
drawals to q = 0.12 is rejected after intense f luctua-
tions. With q = 0.3 set, after passing the minimum in
the scenario, we observe an irretrievable drop in
catches, as in the computational experiment in Fig. 3.

Aperiodic f luctuations end just as abruptly as they
arise after the first drop in catches. The second drop in
cod and crab catches was labeled as a “collapse,” while
the previous drop in catches received little attention,
but the first drop in catches is larger in percentage
terms. During the first crisis, catches dropped sharply
by four times, but this did not lead to a seasonal mor-
atorium on fishing. As a precaution in such a situation,
the logical solution is to introduce a seasonal morato-
rium and conduct a study to accurately account for the
biomass of the spawning stock. The fishery continued
with unstable f luctuations in crab stocks with
unchanged fishing effort and a moderately favorable
forecast. According to the principles of nonlinear
dynamics, such behavior is regarded as a sign of the
presence of critical points, but statistical methods can-
not establish breakdown points for the stock, where
the relationship between stock and replenishment
resembles a step function.

Modeling showed that the path to the final crisis
consists of two transitional regimes. In the computa-
tional experiment, the scenario of the collapse of the
red king crab commercial stocks in 1985 developed
from two phases, and their duration depended on the
increase in  with intensification of the catch. If a
timely moratorium is not introduced, the second
phase of degradation occurs after nine model seasons
in the format of the model time of the computing envi-
ronment with the transition through the critical unsta-
ble equilibrium threshold. After the degradation phase

, the reproduction of the crab popula-
tion does not compensate the natural loss of already-
spawning generations. To restore the population, the
introduction of adult crabs is necessary.

nq

> ϕ λ1* min ( )R S
Many models of local interaction of populations
have been proposed, but the problem of describing a
number of specific extreme cases (outbreaks, crises,
pulsating series of peaks with attenuation, etc.)
remains relevant. For controlled populations, the
model must include an algorithm for changing the
impact and explain the situation from the point of
view of experts. Scenario models are now actively used
to test different fisheries regulation rules and assess the
risk of violation of biological management guidelines
[28]. The question is to what extent scenarios based on
cohort models can account for nonlinear effects.

Collapses of Atlantic cod and red king crab are pro-
voked by the notion of a prosperous state of biore-
sources and, most importantly, by an overestimation
of the effectiveness of replenishing these reserves.
Before the critical threshold, the reproduction effi-
ciency is quite high according to our model. This
property of imaginary recovery leads experts to have
incorrect expectations. A similar situation is well
known in the financial and investment markets, which
goes by the name of “dead cat bounces.” This is a sce-
nario of price behavior in financial markets, which
indicates a false upward trend in prices after a sharp
crisis in a financial asset. A collapse in the value of the
asset is then inevitable.

The development of situations in the model up to
the point of collapse confirms that the ideas of optimal
organization and most profitable strategy for the
exploitation of bioresources in the case of quota distri-
bution are dangerous. The originality of our collapse
modeling lies in that the phenomenon in the scenario
develops according to the internal logic of expert fish-
ery management, which cannot take into account
threshold effects and evaluate modes of unstable f luc-
tuations.

The optimal state of the stock for fishing is close to
the critical threshold. For a fishery to collapse, a small
error in the estimates of the allocated quota is suffi-
cient. We believe that a rational tactic for regulation is
to limit the infrastructural possibilities of fishing
(characteristics of ships, cell sizes, and area of the
mouth of trawls). It is important to keep the fishing
effort at a level acceptable for the biosystem (fished
space of the water basin per unit of time), but not to
limit the volume of production Y by quotas. Modern
powerful trawlers and their fishing gear have become
too effective, and so now it is tactically possible to
limit their catch rates—to leave the prey with some
chance of salvation.

7. FEATURES OF THE PHASE PORTRAIT 
OF A HYBRID DYNAMICAL SYSTEM

The occurrence of irregular f luctuations is a conse-
quence of the shape of the curve ϕ with extrema. The
instability of intermediate results at different positions
of initial point  of the trajectory is associated with0R
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riddled region I in the phase space. The segment
includes a scattered continuum set of subintervals
from two attraction regions  Ω1 and Ω2 of two attrac-
tors Λ1 and Λ2, but the boundaries of all subintervals
do not belong to these attraction regions and form an
invariant set—a strange repeller. There are a number of
chaotic regimes in the dynamics of iterations that are
not associated with closed attracting sets, these being
the phenomena of “horseshoe dynamics” or the effect
of “chaotic scattering” [29].

The position of the boundary of interval I deter-
mines the mapping of points Rmin > Rmax. Such an
interval I = [ϕ(Rmin), ϕ(Rmax)] is placed between two
extrema of the two model dependence. Since the very
existence of  depends on q, the fixed interval

 itself is not important. The range of values on
the segment is called “riddled,” because the initial
points R0 ∈ [ϕ(Rmin), ϕ(Rmax)], which are attracted to
the attractor, are everywhere adjacent to the points not
attracted to . The association of the sets of those
points, which, under the action of iterations, are
mapped to unstable repeller equilibrium positions, are
excluded from interval I. If the unstable stationary
points on the graph of replenishment efficiency ϕ have
more than one direct preimage, then, after the first
iteration, point  will be mapped to repeller

 As a result of all the above conditions
being met, an aperiodic regime arises. Here,

 means the inverse iteration of func-
tion ϕ into the right inverse image of point .

At the moment when a tangent bifurcation occurs,
unstable and stable points  merge into one crit-
ical point  which disappears. This is
how the first fall of the crab catch is described. Interval
I between the mappings of the extrema of function ϕ
will include interval attractor Λ ⊂ [ϕ(Rmin), ϕ(Rmax)].
within itself. In the order in which types of attractors
are listed in Gookenheimer’s theorem [30], this is the
third topological type of ω-limiting sets of iterations
indicated there out of three possible types of attrac-
tors. Closed interval I contains attractor Λ ⊂ I of inter-
val type. Λ denotes a closed invariant subset of I, but
the subset Λ is not connected, since any ε-neighbor-
hood of the point  contains nonattracting
points from the invariant and continuous set ϒ, which
minimally consists of all preimages of  that has

both right and left direct preimages: ,

 The dimension of the “strange repeller”
will be the entire association of points R0 scattered in I
without attraction:
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The discrete component of the trajectory 
obtained in this scenario from the starting point given

by the condition , has the ability to fall
into the ε-neighborhood of chaotic repeller , which
consists of the set of all nonattracting points and aris-
ing when changing the position of the extrema of
dependence ϕ(R). Next, for , and

 , already the intervals in Λ will not be
a closed and invariant subset, where the condition
ϕ(Λ) ∈ Λ is met. In I , we observe chaotic motion in
the finite number of iterations  with one
option to end the chaotic mode  k <
d < ∞.

After the first drop in numbers for the population,
these rearrangements mean a sharp transition to a state
of strong irregular f luctuations with pronounced
peaks, but this is a reversible state. The population
may recover if a management decision is made imme-
diately and the catch is significantly reduced to 0.4q.

In addition to the position of the repellers, the
duration of irregular oscillations under intense fishing
pressure depends on the position of the curve  at its
minimum. When there is a shift of value ϕ(R) in the
extremum Rmin down along the ordinate axis and

, then a boundary crisis is realized for
attractor Λ, composed of a multitude of intervals, and
points  appear. Point
corresponds to unstable equilibrium for a population

at critical abundance. When the inequality R0 < 
is met, then the irreversible degradation of the stock is
realized in a finite number of iterations .
The collapse scenario is reflected in the form R0 ∉ ϒ,
ϕk(R0) = 0, k < ∞. The duration of observation of ape-
riodic f luctuations is not constant due to the sensitiv-
ity to disturbances R0 ± ε near the point that we
choose as the initial one in the computational experi-
ment, but this reproduces the natural uncertainty for a
given fishery object.

CONCLUSIONS

In studies of nonlinear functional iterations, three
nonlinear phenomena that are known called “crises”
[31]. In addition to the “basin-boundary crisis,” an
internal crisis and a “merging crisis” specific to the
period doubling scenario p = 2i, i → ∞, are identified
for the cycles. Crises are not caused by transforma-
tions of the topological types of attractors, but are
associated with rearrangements of the position of the
attractor and its adjacent unstable invariant sets.
Under the boundary crisis effect, attractor Λ, in our
case consisting of a continuum of disordered and dis-
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connected intervals, comes into contact with the left
side of domain Ω.

Fish-stock collapses are not only due to poorly reg-
ulated fisheries. The collapse of the whitefish of Lake
Ontario occurred after an invasion of the sea-lamprey
parasite. Salinization was an important factor in the
Azov and Caspian seas. Freshwater species drastically
reduced their range with a reduction in the freshwater
runoff of the Don and Volga [32]. In the Caspian Sea,
cyclic transgressions and regressions of the sea level
occur, which entails the transformation of the faunal
complex [33]. As the situation with Caspian sturgeons
showed, the release of juveniles is not a very effective
method of recovery. The degradation of the four pre-
viously numerous Caspian sturgeon populations
before their inclusion in the Red Book did not occur in
the form of a collapse: from 1979 to 2010, the fishery
depleted stocks for a long time and systematically [34].
The situation of the depletion of the bioresources of
the Caspian Sea is not directly related to the problems
of expert management of exploitation—experts well
understood the outcome of the process [35], and the
degradation of their stock was predicted by many quite
a long time ago.

REFERENCES

1. A. I. Abakumov and Yu. G. Izazil’skii, Komput. Issled.
Model. 9 (4), 609 (2017).

2. V. G. Il’ichev, Probl. Upr., No. 2, 66 (2014).

3. A. I. Abakumov, L. N. Bocharov, and T. M. Reshet-
nyak, Vopr. Rybolov. 10 (2(38)), 352 (2009).

4. V. G. Il’ichev and L. V. Dashkevich, Komput. Issled.
Model. 11 (5), 879 (2019).

5. V. V. Mikhailov, A. Yu. Perevaryukha, and Yu. S. Re-
shetnikov, Inf. Control Syst., No. 4, 31 (2018).

6. M. Holden and E. P. Stephen, Ecol. Appl. 26, 1553
(2016).

7. C. Costello et al., OECD Food, Agric. Fish. Pap.,
No. 55, 1 (2012). 
https://doi.org/10.1787/5k9bfqnmptd2-en

8. M. L. Pinsky and O. P. Jensen, Proc. Nat. Acad. Sci.
U.S.A. 108, 8317 (2011).

9. Yu. V. Tyutyunov, L. I. Titova, I. N. Senina, and
L. V. Dashkevich, Ekol. Ekon. Inf. Ser. Sist. Anal.
Model. Ekon. Ekol. Sist. 1 (4), 271 (2019).

10. T. Yu. Borisova and I. V. Solov’eva, Mat. Mash. Sist.,
No. 1, 71 (2017).

11. A.Y. Perevaryukha, Cybern. Syst. Anal. 52 (4), 623
(2016).

12. V. V. Skobelev, Cybern. Syst. Anal. 54 (4), 517 (2018).

13. V. V. Mikhailov, Inf.-Upr. Sist., No. 4, 103 (2017).

14. A. V. Sokolov, Tr. Inst. Sist. Anal. Ross. Akad. Nauk 64
(3), 53 (2014).

15. A. B. Medvinsky, N. I. Nurieva, A. V. Rusakov, and
B. V. Adamovich, Biophysics 62, 92 (2017). 
https://doi.org/10.1134/S0006350917010122

16. V. A. Dubrovskaya and I. V. Trofimova, Zh. Beloruss.
Gos. Univ. Biol., No. 3, 76 (2017).

17. A. F. Alimov and N. G. Bogutskaya, Zh. Obzhch. Biol.
64 (2), 112 (2003).

18. M. V. Churova, O. V. Meshcheryakova, N. N. Nemova,
and M. I. Shatunovskii, Biol. Bull. 37, 236 (2010). 
https://doi.org/10.1134/S1062359010030040

19. E. A. Kriksunov, J. Ichthyol. 35 (7), 10 (1995).

20. Z. A. Gutieva, A. A. Turieva, L. N. Gutieva, and
A. R. Demurova, Izv. Gorsk. Gos. Agrar. Univ. 48 (1),
98 (2011).

21. P. V. Veshchev and G. I. Guteneva, Russ. J. Ecol. 43
(2), 142 (2012).

22. V. M. Borisov, A. A. Elizarov, and V. D. Nesterov,
J. Ichthyol. 46, 74 (2006). 
https://doi.org/10.1134/S0032945206010103

23. E. V. Inzhevatkin, V. A. Negovorova, A. A. Savchenko,
V. A. Slepkov, E. V. Slepov, V. G. Sukhovol’skii, and
R. G. Khlebopros, Probl. Upr., No. 5, 73 (2008).

24. J. Roughgarden and F. Smith, Proc. Natl. Acad. Sci.
U.S.A. 93, 5078 (1996).

25. A. Yu. Perevaryukha, J. Autom. Inf. Sci. 49 (6), 22
(2017).

26. B. Dew and R. McConnaughey, Ecol. Appl. 15, 919
(2005).

27. D. Singer, SIAM J. Appl. Math. 35, 260 (1978).

28. T. I. Bulgakova, Rybn. Khoz., No. 4, 77 (2009).

29. S. V. Gonchenko, A. S. Gonchenko, and M. I. Malkin,
Nelin. Dinam. 6 (3), 549 (2010).

30. J. Guckenheimer, Commun. Math. Phys. 70, 133
(1979).

31. C. Grebogi, E. Ott, and J. A. Yorke, Phys. D (Amster-
dam, Neth.) 7 (1–3), 181 (1983).

32. A. V. Nikitina, A. I. Sukhinov, G. A. Ugolnitsky,
A. B. Usov, A. E. Chistyakov, M. V. Puchkin, and
I. S. Semenov, Math. Models Comput. Simul. 9, 101
(2017). 
https://doi.org/10.1134/S2070048217010112

33. T. Yu. Perevaryukha, P. P. Geraskin, Yu. N. Pere-
varyukha, and I. V. Mel’nik, Estestv. Nauki, No. 2, 60
(2010).

34. V. A. Dubrovskaya, Probl. Mekh. Upr.: Nelin. Dinam.
Sist., No. 48, 74 (2016).

35. T. N. Solov’eva, Inf.-Upr. Sist., No. 4, 60 (2016).

Translated by G. Dedkov
TECHNICAL PHYSICS  Vol. 67  No. 6  2022


	INTRODUCTION
	1. FORMALIZATION OF HIERARCHICAL CONTINUOUS TIME WITH EVENTS
	2. CONTINUOUS TIME FRAMING AND SEQUENCE OF EVENTS
	3. RIGID AND SOFT QUALITATIVE TRANSFORMATIONS IN THE DYNAMICS OF ITERATIONS
	4. SITUATION OF A TYPICAL COLLAPSE OF THE COMMERCIAL POPULATION OF AQUATIC ORGANISMS
	5. ANALYSIS OF THE PROPERTIES OF A NONLINEAR COMPUTATIONAL MODEL
	6. SCENARIO WITH REFLEXIVE CONTROL UNDER THE FINAL COLLAPSE
	7. FEATURES OF THE PHASE PORTRAIT OF A HYBRID DYNAMICAL SYSTEM
	CONCLUSIONS
	REFERENCES

		2022-11-30T15:38:29+0300
	Preflight Ticket Signature




