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Abstract—We have established the degree of self-organization of a system under plastic deformation at differ-
ent scale levels. Using fractal analysis, we have determined the Hurst exponent and correlation lengths in the
region of formation of a corrugated (wrinkled) structure in [111] nickel single crystals under compression.
This has made it possible to single out two (micro- and meso-) levels of self-organization in the deformable
system. A qualitative relation between the values of the Hurst exponent and the stages of the stress–strain
curve has been established.
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INTRODUCTION
The surface of a crystal reflects the processes of

plastic deformation occurring in the bulk. Even at the
beginning of the last century, Rosenhein and Eaving,
as well as Hirth and Lote [1] showed that the deforma-
tion relief consists of lines. These lines are steps on the
surface. Such steps appear due to microscopic shears
due to the motion of dislocations in slip planes. The
traces of shear are observed beginning with small shear
strains in single crystals and polycrystals. Their forma-
tion is typical of various types of loading. Conse-
quently, these features can be treated as the basic
structural element of the deformation relief.

During the evolution of deformation, shear traces
in various combinations form elements of the defor-
mation relief of the following scale levels: trace stacks,
meso- and macrobands, corrugated structures of vari-
ous types (wrinkles), persistent slip bands, etc. Corru-
gated structures (wrinkles) are among the most inter-
esting elements of the deformation relief. Their mor-
phology is very diversified, and they are manifested at
different levels [2–16]. Corrugation often accompa-
nies the processing of metals by pressure as an unde-
sirable effect. In publications devoted to this problem,
the formation of the texture and the structure of the
material after straining are mainly considered [2–5]. It
was shown in [6] that corrugation of a metal during
rolling is determined by the peculiarities of the f low of
different layers of the metal in the deformation center.
The formation of a corrugation (protrusions) on the
surface of a copper sample deformed by a hard
indenter was described in [7]. Analogous results were

obtained independently and described in [8]. The for-
mation of corrugated structures and wrinkling under
mechanical loading was mentioned in [9, 10]. The for-
mation of corrugation (wrinkling) during deformation
of films on substrates was reported in a number of pub-
lications [11–15]. It was shown in [15] based on mod-
eling that owing to the formation of corrugation,
closely packed planes relax, forming a saddle-shape
profile of the surface. In some publications, the for-
mation of corrugated structures on the surface was
attributed to excess straining of the surface layer [16] as
compared to the inner part of the crystal. In this case,
the deformation of the solid is treated as a hierarchic
interaction of the elastically deformed layer of the
main crystal and the plastically deformed surface
layer; i.e., the surface layer is a separate mesoscale
layer of deformation [16–18]. This layer possesses a
high density of vacancies and dislocations and the
lowest shear stability. In [19], three different cases
concerning the difference in the degree of hardening
of the surface layer and the inner volume of the crystal
are indicated: the surface is hardened more strongly
than the bulk of the material, the surface is hardened
to a lesser degree than the bulk of the material, and the
surface layer and the inner volume are hardened iden-
tically.

Corrugation (wrinkling) is also typical of single-
crystal objects. The authors have made several
attempts at classification of the entire variety of corru-
gated (wrinkled) structures in fcc single crystals [20–23].
It has been established that the [111] orientation is
more keen to the formation of corrugations with dif-
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ferent morphologies. This is associated with the crys-
tallographic orientation of crystal faces. At the same
time, analysis of corrugated structures of single crys-
tals is convenient for establishing physical regularities
in connection with certain geometry of dislocation slip
and the absence of the grain boundary effects.

Therefore, corrugated structures on the surfaces of
deformed crystals can be observed in different cases.
The formation of corrugated structures depends on
intrinsic properties of a crystal and does not require
special external action. A corrugation is formed on the
surface of a single crystal from shear traces beginning
from a certain strain. Consequently, corrugated struc-
tures are structural elements of the deformation relief
of a qualitatively different level as compared to shear
traces. The facts listed above are essentially the fea-
tures of a self-organizing system. The aim of such self-
organization is obviously the tendency of the crystal to
preserve its integrity under loading for as long as pos-
sible (increase of the longevity of a loaded system).

In this connection, this study aims at establishing
the regularities of self-similarity and, hence, self-orga-
nization of a corrugated structure in the course of
deformation of single crystals, the determination of
the features of the local distribution of stresses in the
zone of corrugation formation and its ability to stress
relaxation.

1. MATERIAL AND TECHNIQUE
As the object of investigation, we chose a nickel

single crystal (with a purity of 99.99%) with the [111]
orientation of the contraction axis. Compression
strain was carried out on the Instron ElektroPuls
E10000 test machine at a rate of 1.4 × 10–3 s–1. The
deformation relief was investigated using an Olympus
LEXT OLS4100 confocal laser scanning microscope.
The size of the scanned region in each case was
0.066 mm2 (0.256 × 0.256 mm2). The depth resolu-
tion was 0.06 μm. Experiments were carried out in the
strain interval 1.5–18%. The size of the scanned
region in this case sets a limit on the self-organization
scale being established.

For revealing scale-invariant regularities of plastic
straining of nickel single crystals under compression, we
used fractal analysis of the deformation relief based on
the height–height correlation function H(r) [24, 25]

where Z(r) is the function of the surface height over all
pairs of points separated by a fixed distance r; angle
brackets indicate averaging over all pairs of points.

The slope of the initial segment of the curve
describing the height–height correlation function
H(r) and plotted in logarithmic axes can be used for
determining the Hurst exponent (H) and correlation
length L. The correlation length is determined by the
projection of the linear segment onto the abscissa axis.

= 〈 − − 〉
2( ) [ ( ') ( ' )] ,H r Z r Z r r
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2. RESULTS AND DISCUSSION
We have investigated the evolution of the deforma-

tion relief on the (112) lateral face of a [111] nickel sin-
gle crystal. Here, we report on the results obtained for
the region of the lateral face, which is occupied by cor-
rugated (wrinkled) structures. The region under inves-
tigation is at the center of the face near the vertical
edge of the sample. At the initial strains, this zone is in
the uniaxial compression region. However, with
increasing compression ratio, the scheme of the
stressed state passes to a more complex extension–
compression case due to the macroscopic change in
the sample shape [26]. The corrugation (wrinkled)
type formed in this region has a clearly manifested and
single smooth boundary. Within the corrugation
region, a system of shear traces can be observed. One
side of the corrugation is more gently sloping, while
the other is steeper relative to the plane of the face. The
folds are formed quasi-parallel to one another. Such a
type of deformation relief was also observed in our
experiments with copper single crystals and was con-
sidered in detail in [23].

The deformation relief and the change in the sur-
face profile is illustrated in Fig. 1. The surface profile
was determined on the surface in the direction perpen-
dicular to the wrinkles; the Y axis was perpendicular to
the surface of the face. Shear traces and wrinkles
appear for a total strain of 1.5% of the sample. This is
reflected in the profile of the cutting plane in the
region of the relief formation on the surface (Fig. 1b).
With increasing strain, wrinkled structures on the sur-
face become manifested more clearly (Figs. 1a, 1c–1e).
On the surface profile, such structures have the form
of alternating regions of material extrusion and intru-
sion (quasi-periodic profile). On the profile, we can
always single out shear steps h (Fig. 1f). With increas-
ing strain, the shape of the surface profile changes. At
a strain of 8%, we observe more rounded pits, but with
increasing deformation, a tendency to deepening and
sharpening of the pits can be traced. The extrusion
regions lose their rounded profile and acquire a
pointed shape with some roughness at the tips. In
addition, the number of extrusion/intrusion zones on
a segment under investigation increases.

Analysis of the 3D pattern and the surface profile in
the region of formation of corrugated structures sug-
gests a mounded form of the surface. It is well known
that there are surfaces characterized by undulated forma-
tions with a regular arrangement of “mounds” [27, 28].
Such surfaces have a characteristic long-range scale of
length (wavelength) λ, which is a measure of the spac-
ing between the mounds.

The existence of the mounded surface can be
judged from the height–height correlation function
H(r), power spectrum density (PSD) functions, and
autocorrelation function A(r). Quantity λ (wavelength,
distance between mounds) can be determined as the
value of r that corresponds to the first minimum of the



542 ALFYOROVA, LYCHAGIN

Fig. 1. Evolution of the surface profile in the region of wrinkle formation: (a) deformation relief for ε = 15%; surface profiles for
strains of 1.5% (b), 8% (c), 12% (d), and 15% (e); (f) shear steps h (a fragment of the curve in (e)).
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Table 1. Characteristics of a corrugated (wrinkled) defor-
mation relief

*Three scaling levels are singled out on the graph.

Strain 
ε, %

λ, 
μm

H1 H2 L1, μm L2, μm rc, μm

1.5 − 0.002 0.009 2 120 55
8 83 0.017 0.040 3 18 23

12 84 0.018 0.046 2 15 20
15 80 0.022 0.067 1.5 10 22
18 82 0.012 0.049/0.071* 1.2/7* 10 18
height–height function H(r) or, which is the same, as
the value corresponding to the first maximum of the
autocorrelation function A(r) [29]. Analysis of experi-
mental results has shown that the corrugated (wrin-
kled) structures under investigation form a mounded
surface. The results on the value of λ determined for
the case under investigation are given in Table 1.

In addition, autocorrelation function A(r) reflects
the relation between the deformations in different
local regions and makes it possible to judge about the
interaction of local regions separated by different
intervals. In fact, correlation radius rc is the size of the
3D region with self-consistent straining. The correla-
tion radii for corrugated structures are given in Table 1.
Analysis of the results indicates that mesovolumes of a
size of about 55 μm initially exhibit self-consistent
deformation. With increasing strain, we can observe a
decrease in the size of the regions of mutual effect to
18–23 μm. Comparison of wavelength λ with correla-
tion radius rc shows that from 3 to 4 self-consistent
deformation zones fit into length λ. Therefore, we
observe several levels of self-organization of deforma-
tion. A decrease in the matched deformation zone
facilitates localization of strain, which is disadvanta-
geous as it regards the preservation of integrity of the
strained crystal. It follows hence that the ability of a
material to structural self-organization, which would
effectively dissipate the loading energy, decreases.
Consequently, other deformation mechanisms should
be actuated to preserving the integrity of the crystal.
Such mechanisms can be stress relaxation due to the
rearrangement of the dislocation structure and the
evolution of rotational plasticity modes.
Analysis of the behavior of the resultant height–
height correlation functions H(r) has made it possible
to single out segment L1 and L2 on the curve on which
the experimental points can be approximated by
straight lines with different slopes relative to the axes
(Fig. 2). This makes it possible to determine the Hurst
exponent and the upper boundaries of the correlation
length for several segments (see Table 1). On segment
L3, it is impossible to approximate experimental data
with the help of a straight line because of their f luctu-
ation behavior. This indicates the lack of stable cor-
relation on this size scale (Fig. 2a). However, when the
strain attains 18%, the third correlation length L3 can
be singled out (Fig. 2b).

Hurst exponent H can be used for analyzing the
degree of randomization (self-organization) of the
system [30]. A value of the Hurst exponent smaller
than 0.5 indicates the antipersistent ergodic type of the
system (i.e., the system strives to return to the average
TECHNICAL PHYSICS  Vol. 63  No. 4  2018
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Fig. 2. Height–height correlation function in the region of
wrinkle formation on the (112) lateral face of a [111] nickel
single crystal: (a) ε = 15%; (b) ε = 18% (dashed curves are
approximations of the segments of the solid curves).
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value); in this case, the degree of stability of the system
depends on the closeness of the value of H to zero. The
value of H = 0.5 indicates the absence of a correlation.
Conversely, the values exceeding 0.5 indicate the exis-
tence of long-scale correlations [31].

Analysis of the results shows that for ε = 1.5%, the
deformation is of the antipersistent type (i.e., the sys-
tem experiences significant changes). On a smaller-
scale level, this tendency is manifested more strongly.
The case considered here corresponds to the begin-
ning of plastic deformation, when the plastic deforma-
tion processes are associated with the evolution of a
shear in the bulk of the single crystal and simple mate-
rial rotations [32]. In all probability, the main sources
of dislocations are microscale surface stress concen-
trators [33], and relaxation is due to counter shears.
Owing to such “favorable” conditions, the size of the
region with self-consistent deformation amounts to
55 μm. It should be noted that the ability of the system
to self-organization at the level of the dislocation sub-
system is very high in the entire range of strains under
investigation.

With increasing strain, an increase in the Hurst
exponent and a decrease in the size of the zone with
self-consistent deformation can be observed. As
before, sources of dislocations are stress microconcen-
trators and their stress relaxation occurs via a redistri-
bution of dislocations and the accumulation of the
excess dislocation density. The distribution of disloca-
TECHNICAL PHYSICS  Vol. 63  No. 4  2018
tions exhibits the features of self-organization more
clearly [33, 34]. In this case, the formation of a cellular
dislocation structure begins. At the third stage, the
cellular dislocation substructure continues its evolu-
tion, and a transition to a disoriented cellular disloca-
tion structure takes place [26]. At the second and third
stages, the cells in fcc materials with high and moder-
ate values of packing defect energy are known to play a
significant role in the plastic deformation and harden-
ing. Dislocation cells produce barriers for the motion
of dislocations. At the third stage, the cells become
disoriented, experience fracture, and subboundaries
determining the evolution of the microband substruc-
ture appear. In this case, traces with a large shear strain
appear. At the microscopic level, the self-consistent
motion of dislocations produces plastic deformation
of the crystal as before [32]. An insignificant increase
in the Hurst exponent in this case indicates that the
clearly manifested tendency to the quasi-periodic for-
mation of the profile persists. Apparently, the increas-
ing role of cooperative processes in the dislocation
substructure ensures a smaller increase in the Hurst
exponent on correlation length L1 than on correlation

length L2. However, the Hurst exponent on the strain

interval under investigation (1.5–18%) does not attain
a value of 0.5; i.e., the system remains correlated and
tends to self-organization on the scale levels consid-
ered here. Otherwise, stress relaxation is not so effec-
tive, and this leads to fracture of the crystal. Such cases
are described in the literature. In [31], the existence of
two zones with the values of the Hurst exponent of
0.3–0.4 and 0.5–0.6 was established for an aluminum
alloy after dynamic loading; these zones form the frac-
ture surface. The intervals of determined scales is 1–
18 μm. According to the results obtained in [35], the
values of the Hurst exponent in the fracture region
amount to 0.64–0.81 depending on the experimental
conditions. In addition, it is worth considering the fact
that the Hurst exponent for many natural phenomena
lie in the interval 0.72–0.74 according to the available
data [36]. In the description of the deformation relief
for different modes of loading, the Hurst exponent
also exceeds 0.5 [35, 37–39]. A number of such exper-
iments were performed on measuring segments of a
few millimeters, which made it possible to determine
the values of the Hurst exponent on the macrolevel
and led to the conclusion that self-organization on a
large scale is of a type differing from that on the levels
described in this study.

It should be noted that when the strain attains a
value of 18%, three segments can be singled out of the
height–height correlation function. This is due to the
actuation of a new mechanism of organization of plas-
tic deformation at the level of the dislocation subsys-
tem, viz., the formation of misoriented microbands, as
well as disorientations of a larger scale. Our experi-
ments with nickel single crystals obtained by diffrac-
tion of reflected electrons revealed that most clearly
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Fig. 3. Dependences of Hurst exponents H1, H2 and coef-
ficient w on strain ε (stages II, III, and IV of the deforma-
tion curves).
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manifested disorientation spreads over a depth of
350–380 μm from the sample surface.

Thus, we can single out the following scale levels of
self-organization of plastic deformation of a crystal:
the level of the dislocation structure, viz., the
microlevel (corresponding to L1), the level of the

group of parallel shear traces, viz., mesolevel (corre-
sponding to L2), and the mesolevel L3 associated with

the formation of misoriented region. The changes in
the type of the dislocation substructure under defor-
mation, the relief parameters, and the values of the
Hurst exponent are found to be interrelated.

Since the surface profile in the zone of formation of
corrugated structures is alteration of humps and pits, it
determines the local curvature of the surface. Each pit
is a local zone of a negative curvature of the surface in
which additional compressive stresses σa appear.

Using the relations of mechanics, we can estimate
additional compressive stress σa by the formula

where σ0 is the stress in the sample, w = (1 + 2(a/r)–1/2),
a is the depth of a pit of the profile, and r is the profile
radius of curvature. It is coefficient w that in fact shows
the degree of elevation of the local stress in the zone of
pit formation.

We have calculated coefficient w for various strains.
The results together with the values of the Hurst expo-
nent are shown in Fig. 3. Analysis shows that with
increasing strain, the additional local stress in the zone
of pit formation increases (by about 14% as compared
to extreme strains of 8% and 18%). At the same time,
the Hurst exponent H2 also increases, indicating that

the tendency to self-organization of the system at the
mesolevel is slightly less stable than at the microlevel at
which Hurst exponent H1 practically does not increase

and even decreases upon a transition between the third
and fourth stages (the tendency to self-organization
increases).

In addition, the values of the Hurst exponent H1 at

the microlevel are quite close in the entire range of
strains considered here, which indicates the self-simi-
lar type of organization of deformation in the entire
range of strains. It can be noted that a change in the
deformation stage is accompanied with a certain
increase in the Hurst exponent H1 (see Fig. 3), which

reflects the evolution in the dislocation structure.
Hurst exponent H2 also increases upon a change in the

deformation stages. At the same time, the increase in
the Hurst exponent was attributed in [31] to the stage
nature of the process of dynamic localization of plastic
deformation. An increase in the correlation length
upon a change of stages was also noted in [40].

CONCLUSIONS

1. It has been established that corrugated (wrin-
kled) structures have mounded surfaces with a regular

σ = σa 0 ,w
 arrangement of mounds with a long-range length scale
(wavelength) λ.

2. Using fractal analysis, we have determined the
values of the Hurst exponent and correlation lengths
for a corrugated (wrinkled) structure. The difference
between Hurst exponents H1 and H2 indicates that

self-organization at the micro- and mesoscale levels is
governed by different mechanisms. At the microlevel,
it is due to self-organization of the dislocation stric-
ture, while at the mesolevel, due to correlated shear in
parallel slip planes.

3. It has been found that upon the attainment of a
strain of 18%, the third value L3 of the correlation

length can be established. This can indicate the actua-
tion of an additional mode of self-organization of
deformation (misorientation of local regions).

4. We have established the qualitative relation
between Hurst exponents H1, H2 and coefficient w
characterizing the extent of increase in the local stress
upon a change of the deformation stage.
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