Skip to main content
Log in

Structure of a Deformed Inhomogeneous Material on the Data of Acoustic Emission and X-Ray Computer Microtomography

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Accumulation of defects at various stages of the deformation of a structurally inhomogeneous material (granite) has been studied using two nondestructive methods: acoustic emission (AE) and X-ray computer microtomorgaphy (CT). The quasi-static testing of cylindrical samples of a Westerly granite was carried out under uniaxial compression. The control of the defect formation was realized using the real-time monitoring of acoustic emission. For each sample under study, several steps of the loading and tomographic imaging have been performed. We have found that an exponential or power-law function of the energy distribution of the AE signals makes it possible to select a sample region, in which the system of defects has transited into a self-organized criticality state and large cracks have been formed. This result coincides with the data of the X-ray tomography Computer Microtomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Lockner, J. D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin, in Fault Mechanics and Transport Properties of Rocks, Ed. by B. Evans and T.-F. Wong (Academic, London, 1992), p. 3.

  2. M. Petružálek, J. Vilhelm, V. Rudajev, T. Lokajívcek, and T. Svitek, Int. J. Rock Mech. Mining Sci. 60, 208 (2013).

    Article  Google Scholar 

  3. Y. Ben-Zion and V. Lyakhovsky, Pure Appl. Geophys. 159, 2385 (2002).

    Article  ADS  Google Scholar 

  4. Y. Hamie, O. Katz, V. Lyakhovsky, Z. Reches, and Yu. Fialko, Geophys. J. Int. 167, 1005 (2006).

    Article  ADS  Google Scholar 

  5. V. Kuksenko, N. Tomilin, E. Damaskinskaya, and D. Lockner, Pure Appl. Geophys. 146, 253 (1996).

    Article  ADS  Google Scholar 

  6. S. Peng and A. M. Johnson, Int. J. Rock Mech. Mining Sci. Geomech. Abs. 9, 37 (1972).

    Article  Google Scholar 

  7. A. G. Vostretsov, G. I. Kulakov, Yu. A. Timonenkov, and G. E. Yakovitskaya, J. Mining Sci. 34, 296 (1998).

    Article  Google Scholar 

  8. V. I. Vettegren’, V. S. Kuksenko, and I. P. Shcherbakov, Tech. Phys. 58, 136 (2013).

    Article  Google Scholar 

  9. A. Carpinteri, F. Cardone, and G. Lacidogna, Exp. Mech. 50, 1235 (2010).

    Article  Google Scholar 

  10. A. Carpinteri, A. Chiodoni, A. Manuello, and R. Sandrone, Strain 47, 282 (2011).

    Article  Google Scholar 

  11. T. N. Dey and Wang Chi-Yuen, Int. J. Rock Mech. Mining Sci. 18, 199 (1981).

    Article  Google Scholar 

  12. R. L. Kranz, Int. J. Rock Mech. Mining Sci. 16, 37 (1979).

    Article  Google Scholar 

  13. Yoshizo Kawaguchi, Jpn. J. Appl. Phys. A 37, 3495 (1998).

    Article  ADS  Google Scholar 

  14. V. L. Hilarov, M. S. Varkentin, V. E. Korsukov, M. M. Korsukova, and V. S. Kuksenko, Phys. Solid State 52, 1404 (2010).

    Article  ADS  Google Scholar 

  15. A. V. Ponomarev, A. D. Zavyalov, V. B. Smirnov, and D. A. Lockner, Tectonophys. 277, 57 (1997).

    Article  Google Scholar 

  16. T. H. W. Goebel, T. W. Becker, D. Schorlemmer, S. Stanchits, C. Sammis, E. Rybacki, and G. Dresen, J. Geophys. Res. 117, B03310 (2012).

    Article  ADS  Google Scholar 

  17. Xinglin Lei and Shengli Ma, Earthq. Sci. 27, 627 (2014).

    Article  ADS  Google Scholar 

  18. L. R. Botvina, Fiz. Zemli, No. 10, 5 (2011).

    Google Scholar 

  19. V. P. Tamuzh and V. S. Kuksenko, The Micromechanics of Fracture of Polymer Materials (Zinatne, Riga, 1978) [in Russian].

    Google Scholar 

  20. O. B. Naimark, Phys. Mesomech. J. 4 (4), 45 (2003).

    Google Scholar 

  21. I. A. Panteleev, O. A. Plekhov, and O. B. Naimark, Fiz. Zemli, No. 6, 43 (2012).

    Google Scholar 

  22. O. B. Naimark, JETP Lett. 67, 751 (1998).

    Article  ADS  Google Scholar 

  23. P. Bak, How Nature Works: The Science of Self-Organized Criticality (Springer, 1996).

    Book  MATH  Google Scholar 

  24. G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977; Mir, Moscow, 1979).

    MATH  Google Scholar 

  25. G. G. Malinetskii and A. B. Potapov, Modern Problems of Nonlinear Dynamics (Editorial URSS, Moscow, 2002).

    Google Scholar 

  26. E. Damaskinskaya, V. Hilarov, and D. Frolov, AIP Conf. Proc. 1783, 020033 (2016).

    Article  Google Scholar 

  27. T. Tóth and R. Hudák, Acta Mech. Slov. 17 (4), 40 (2013).

    Google Scholar 

  28. R. M. Stesky, Canad. J. Earth Sci. 15, 361 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Damaskinskaya.

Additional information

Original Russian Text © E.E. Damaskinskaya, I.A. Panteleev, D.R. Gafurova, D.I. Frolov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 7, pp. 1353–1357.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damaskinskaya, E.E., Panteleev, I.A., Gafurova, D.R. et al. Structure of a Deformed Inhomogeneous Material on the Data of Acoustic Emission and X-Ray Computer Microtomography. Phys. Solid State 60, 1363–1367 (2018). https://doi.org/10.1134/S1063783418070077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418070077

Navigation