Skip to main content
Log in

Inertial Thermonuclear Fusion Using Explosive Magnetic Generators

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

There are two known directions of work on the implementation of inertial thermonuclear fusion using Z-pinches. In the first, to achieve thermonuclear ignition, it is proposed to compress the target by indirect irradiation with Z-pinch X-ray radiation. The other direction is to compress the preheated magnetized plasma with a liner. Preheating reduces compression requirements, while magnetization reduces thermal conductivity losses and provides additional heating by α-particles even at low plasma density. This concept is being developed in the United States at the Z machine (MagLIF project). According to existing concepts, in order to achieve thermonuclear ignition in these schemes, facilities are required that can create a current pulse with an amplitude of ~ 60 MA. The most powerful facilities based on capacitor banks—the Z machine—realizes a current of up to 25 MA. The creation of facilities that are one order of magnitude more powerful than the Z machine is a matter of the future. Along with this, explosive magnetic generators (EMG) today already implement the required energy, although with much longer rise time of current pulse. The paper discusses the possibilities of using the EMG to achieve the ignition, the arising problems and ways to solve them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. LePape, T. Ma, A. G. MacPhee, J. L. Milovich, et al., Nature 510, 432 (2014). https://doi.org/10.1038/nature13533

    Article  ADS  Google Scholar 

  2. M. P. Desjarlais and B. M. Marder, Phys. Plasmas 6, 2057 (1999). https://doi.org/10.1063/1.873460

    Article  ADS  Google Scholar 

  3. R. A. Vesey, M. C. Herrmann, R. W. Lemke, M. P. Desjarlais, M. E. Cuneo, W. A. Stygar, G. R. Bennett, R. B. Campbell, P. J. Christenson, N. A. Mehlhorn, J. L. Porter, and S. A. Slutz, Phys. Plasmas 14, 056302 (2007). https://doi.org/10.1063/1.2472364

  4. S. A. Slutz, M. C. Herrmann, R. A. Vesey, A. B. Sefkow, D. B. Sinars, D. C. Rovang, K. J. Peterson, and V. E. Cuneo, Phys. Plasmas 17, 056303 (2010). https://doi.org/10.1063/1.3333505

  5. S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012). https://doi.org/10.1103/PhysRevLett.108.025003

  6. Yu. B. Khariton, V. N. Mokhov, V. K. Chernyshev, and V. B. Yakubov, Sov. Phys.–Usp. 19, 1032 (1976).

    Article  Google Scholar 

  7. V. N. Mokhov, V. K. Chernyshev, V. B. Yakubov, M. S. Protasov, V. M. Danov, and E. I. Zharinov, Sov. Phys.–Dokl. 24, 557 (1979).

    ADS  Google Scholar 

  8. A. M. Buiko, G. I. Volkov, S. F. Garanin, V. A. Demidov, Yu. N. Dolin, V. V. Zmushko, V. A. Ivanov, V. P. Korchagin, M. V. Lartsev, V. I. Mamyshev, A. P. Mochalov, V. N. Mokhov, I. V. Morozov, N. N. Moskvichev, S. V. Pak, et al., Phys.–Dokl. 40, 459 (1995).

    ADS  Google Scholar 

  9. I. R. Lindemuth, R. E. Reinovsky, R. E. Chrien, J. M. Christian, C. A. Ekdahl, J. H. Goforth, R. C. Haight, G. Idzorek, N. S. King, R. C. Kirkpatrick, R. E. Larson, G. L. Morgan, B. W. Olinger, H. Oona, P. T. Sheehey, J. S. Shlaster, et al., Phys. Rev. Lett. 75, 1953 (1995). https://doi.org/10.1103/PhysRevLett.75.1953

    Article  ADS  Google Scholar 

  10. S. F. Garanin, IEEE Trans. Plasma Sci. 26, 1230 (1998). https://doi.org/10.1109/27.725155

    Article  ADS  Google Scholar 

  11. S. F. Garanin, V. I. Mamyshev, and E. M. Palagina, IEEE Trans. Plasma Sci. 34, 2268 (2006). https://doi.org/10.1109/TPS.2006.878370

    Article  ADS  Google Scholar 

  12. S. F. Garanin, V. I. Mamyshev, and V. B. Yakubov, IEEE Trans. Plasma Sci. 34, 2273 (2006). https://doi.org/10.1109/TPS.2006.878368

    Article  ADS  Google Scholar 

  13. S. F. Garanin, Physical Processes in MAGO-MTF Systems (RFYaTs-VNIIEF, Sarov, 2012) [in Russian].

  14. V. K. Chernychev, V. P. Korchagin, L. P. Babich, O. M. Burenkov, Yu. N. Dolin, P. V. Duday, V. I. Dudin, V. A. Ivanov, G. V. Karpov, A. I. Kraev, V. B. Kudel’kin, I. M. Kutsyk, V. I. Mamyshev, I. V. Morozov, S. V. Pak, et al., IEEE Trans. Plasma Sci. 44, 250 (2016). https://doi.org/10.1109/TPS.2016.2524211

    Article  ADS  Google Scholar 

  15. V. K. Chernychev, V. P. Korchagin, L. P. Babich, O. M. Burenkov, G. I. Volkov, Yu. N. Dolin, V. I. Dudin, V. A. Ivanov, A. V. Ivanovskii, G. V. Karpov, A. I. Kraev, V. B. Kudelkin, I. V. Morozov, S. V. Pak, S. M. Polyushko, et al., Plasma Phys. Rep. 44, 180 (2018). https://doi.org/10.1134/S1063780X18020022

    Article  ADS  Google Scholar 

  16. M. R. Gomez, S. A. Slutz, A. B. Sefkow, D. B. Sinars, K. D. Hahn, S. B. Hansen, E. C. Harding, P. F. Knapp, P. F. Schmit, C. A. Jennings, T. J. Awe, M. Geissel, D. C. Rovang, G. A. Chandler, G. W. Cooper, et al., Phys. Rev. Lett. 113, 155003 (2014). https://doi.org/10.1103/PhysREVLett.113.155003

  17. M. R. Gomez, S. A. Slutz, P. F. Knapp, K. D. Hahn, M. R. Weis, E. C. Harding, M. Geissel, J. R. Fein, M. E. Glinsky, S. B. Hansen, A. J. Harvey-Thompson, C. A. Jennings, I. C. Smith, D. Woodbury, D. J. Ampleford, et al., IEEE Trans. Plasma Sci. 47, 2081 (2019). https://doi.org/10.1109/TPS.2019.2893517

    Article  ADS  Google Scholar 

  18. P. F. Knapp, M. R. Gomez, S. B. Hansen, M. E. Glinsky, C. A. Jennings, S. A. Slutz, E. C. Harding, K. D. Hahn, M. R. Weis, M. Evans, M. R. Martin, A. J. Harvey-Thompson, M. Geissel, I. C. Smith, D. E. Ruiz, et al., Phys. Plasmas 26, 012704 (2019). https://doi.org/10.1063/1.5064548

  19. M. R. Gomez, S. A. Slutz, A. B. Sefkow, K. D. Hahn, S. B. Hansen, P. F. Knapp, P. F. Schmit, C. L. Ruiz, D. B. Sinars, E. C. Harding, C. A. Jennings, T. J. Awe, M. Geissel, D. C. Rovang, I. C. Smith, et al., Phys. Plasmas 22, 056306 (2015). https://doi.org/10.1063/1.4919394

  20. A. D. Sakharov, R. Z. Lyudaev, V. N. Smirnov, Yu. I. Plyushchev, A. I. Pavlovskii, V. K. Chernyshev, E. F. Feoktistova, E. I. Zharinov, and Yu. A. Zysin, Dokl. Akad. Nauk SSSR 165, 65 (1965).

    Google Scholar 

  21. A. D. Sakharov, Sov. Phys.–Usp. 9, 294 (1966).

    Article  ADS  Google Scholar 

  22. C. M. Fowler, W. B. Garn, and R. S. Caird, J. Appl. Phys. 31, 588 (1960).

    Article  ADS  Google Scholar 

  23. V. K. Chernyshev, V. A. Demidov, S. A. Kazakov, I. K. Fetisov, and V. A. Shevtsov, in Megagauss Magnetic Field Generation and Pulsed Power Applications, Ed. by V. Cowan and R. B. Spielman (Nova Science, New York, 1994), p. 519.

    Google Scholar 

  24. V. K. Chernyshev, G. I. Volkov, and V. V. Vakhrushev, in Megagauss Physics and Technology, Ed. P. J. Turchi (Plenum, New York, 1980), p. 663.

    Google Scholar 

  25. A. A. Petrukhin, V. V. Golubev, V. M. Danov, V. I. Mamyshev, E. S. Pavlovskii, V. A. Prokopov, M. S. Protasov, V. K. Chernyshev, V. A. Shevtsov, and V. B. Yakubov, in Ultrahigh Magnetic Fields. Physics. Techniques. Applications, Ed. by V. M. Titov and G. A. Shvetsov (Nauka, Moscow: 1984), p. 384 [in Russian].

  26. B. E. Grinevich, V. A. Demidov, A. V. Ivanovskii, and V. D. Selemir, Phys.–Usp. 54, 403 (2011). https://doi.org/10.3367/UFNe.0181.201104k.0422

    Article  Google Scholar 

  27. V. K. Chernyshev, in Megauss and Megaampere Pulse Technology and Applications, Ed. by V. K. Chernyshev, V. D. Selemir, and L. N. Plyashkevich (VNIIEF, Sarov, 1997), p. 41 [in Russian].

    Google Scholar 

  28. S. G. Garanin, A. V. Ivanovsky, and L. S. Mkhitariyan, Nucl. Fusion 51, 103010 (2011). https://doi.org/10.1088/0029-5515/51/10/103010

  29. V. K. Chernyshev, A. I. Kucherov, A. I. Mezhevov, and V. V. Vakhrushev, in Digest of Technical Papers. 11th IEEE International Pulsed Power Conference, Baltimore, MD, 1997, Ed. by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), p. 1208. https://doi.org/10.1109/PPC.1997.674499

  30. A. V. Ivanovsky, in Proceedings of the 13th International Conference on Megagauss Magnetic Field Generation and Related Topics, Suzhou, 2010, p. 32.

  31. V. A. Demidov, F. I. Kraev, V. I. Mamyshev, A. A. Petrukhin, V. P. Pogorelov, V. K. Chernyshev, V. A. Sytvtsov, and V. I. Shpagin, in Megagauss Fields and Pulsed Power Systems, Ed. by V. M. Titov and G. A. Shvetsov (Nova Science, New York, 1990), p. 351.

    Google Scholar 

  32. A. A. Bazanov, E. I. Bochkov, S. G. Garanin, P. V. Dudai, A. A. Zimenkov, A. V. Ivanovskii, K. N. Klimushkin, V. M. Komarov, A. I. Kraev, V. B. Kudel’kin, V. I. Mamyshev, S. M. Polyushko, Z. S. Tsibikov, and E. V. Shapovalov, Dokl. Akad. Nauk 489, 355 (2019). https://doi.org/10.31857/S0869-56524894355-357

    Article  Google Scholar 

  33. Yu. P. Raizer, Fundamentals of Modern Physics of Gas-Discharge Processes (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  34. F. S. Felber, M. M. Malley, F. J. Wessel, M. K. Matzen, M. A. Palmer, R. B. Spielman, M. A. Liberman, and A. L. Velikovich, Phys. Fluids 31, 2053 (1988). https://doi.org/10.1063/1.866657

    Article  ADS  Google Scholar 

  35. S. M. Golberg, M. A. Liberman, and A. L. Velikovich, Plasma Phys. Control. Fusion 32, 319 (1990). https://doi.org/10.1088/0741-3335/32/5/002

    Article  ADS  Google Scholar 

  36. V. F. Ermolovich, A. V. Ivanovskii, and A. P. Orlov, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., No. 1, 3 (1999).

  37. Yu. S. Vakhrameev,V. N. Mokhov, and N. A. Popov, At. Energy 49, 567 (1980). https://doi.org/10.1007/BF01121623

    Article  Google Scholar 

  38. V. F. Ermolovich, A. V. Ivanovskii, A. P. Orlov, and V. D. Selemir, Tech. Phys. 45, 1241 (2000).

    Article  Google Scholar 

  39. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.

    Google Scholar 

  40. S. G. Garanin, Atom, No. 68, 26 (1997).

  41. V. S. Zuev, V. A. Katulin, V. Yu. Nosach, and O. Yu. Nosach, Sov. Phys.–JETP 35, 870 (1972).

    ADS  Google Scholar 

  42. V. S. Zuev, Tr. Fiz. Inst. im. P.N. Lebedeva, Ross. Akad. Nauk 225 (1992).

  43. V. S. Zuev and V. A. Katulin, Quantum Electron. 27, 1073 (1997).

    Article  ADS  Google Scholar 

  44. V. P. Arzhanov, B. P. Borovich, V. S. Zuev, V. M. Kazanskii, V. A. Katulin, G. A. Kirillov, S. B. Kormer, Yu. V. Kuratov, A. I. Kuryapin, O. Yu. Nosach, M. V. Sinitsyn, and Yu. Yu. Stoilov, Sov. J. Quantum Electron. 22, 118 (1992).

    Article  ADS  Google Scholar 

  45. M. M. Basko, A. J. Kemp, and J. Meyer-ter-Vehn, Nucl. Fusion 40, 59 (2000). https://doi.org/10.1088/0029-5515/40/1/305

    Article  ADS  Google Scholar 

  46. A. V. Bessarab, Yu. V. Dolgopolov, N. V. Zhidkov, G. A. Kirillov, G. G. Kochemasov, S. M. Kulikov, V. M. Murugov, V. D. Nikolaev, S. N. Pevnyi, A. V. Ryadov, A. B. Smirnov, S. P. Smyshlyaev, and S. A. Sukharev, Izv. Akad. Nauk SSSR, Ser. Fiz. 52 (2), 333 (1988).

    Google Scholar 

  47. S. N. Pevny, V. A. Eroshenko, S. M. Kulikov, G. A. Kirillov, G. G. Kochemasov, S. P. Smyshlyaev, and S. A. Sucharev, Proc. SPIE 1980, 18 (1993). https://doi.org/10.1117/12.144525

    Article  ADS  Google Scholar 

  48. V. A. Eroshenko, G. A. Kirillov, G. G. Kochemasov, S. M. Kulikov, S. N. Pevny, S. P. Smyshlyaev, and S. A. Sucharev, Proc. SPIE 2095, 134 (1993).

    Article  ADS  Google Scholar 

  49. R. I. Il’kaev, G. A. Kirillov, G. G. Kochemasov, S. M. Kulikov, S. N. Pevny, L. D. Ryabev, S. A. Sukharev, E. V. George, A. S. Kuzubov, and E. Storm, in Proceedings of IAEA Technical Committee Meeting on Drivers for Inertial Confinement Fusion, Paris, 1994, p. 191.

  50. G. A. Kirillov, G. G. Kochemasov, S. M. Kulikov, S. N. Pevny, and S. A. Sukharev, in Proceedings of the 12th International Conference on Laser Interaction and Related Plasma Phenomena, Osaka, 1995, Vol. 2, p. 866.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garanin, S.G., Ivanovskii, A.V., Kulikov, S.M. et al. Inertial Thermonuclear Fusion Using Explosive Magnetic Generators. Plasma Phys. Rep. 48, 111–120 (2022). https://doi.org/10.1134/S1063780X22020076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22020076

Keywords:

Navigation