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Abstract—Studying stationary regimes with high plasma confinement in a tokamak with reactor technologies
(TRT) [1] involves calculating the plasma stability taking into account the influence of the current density
profiles and pressure gradient in the pedestal near the boundary. At the same time, the operating limits should
be determined by the parameters of the pedestal, which, in particular, are set by the stability limit of the peel-
ing–ballooning modes that trigger the peripheral disruption of edge localized modes (ELM). Using simula-
tion of the quasi-equilibrium evolution of the plasma by the ASTRA and DINA codes, as well as a simulator
of magnetohydrodynamic (MHD) modes localized at the boundary of the plasma torus based on the KINX
code, stability calculations are performed for different plasma scenarios in the TRT with varying plasma den-
sity and temperature profiles, as well as the corresponding bootstrap current density in the pedestal region.
At the same time, experimental scalings for the width of the pedestal are used. The obtained pressure values
are below the limits for an ITER-like plasma due to the lower triangularity and higher aspect ratio of TRT
plasma. For the same reason, the reversal of magnetic field shear in the pedestal occurs at a lower current den-
sity, which causes the instability of modes with low toroidal wave numbers and reduces the effect of diamag-
netic stabilization.
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1. INTRODUCTION
The H-mode, the regime with a high energy-con-

finement time in tokamak plasma, is accompanied by
the formation of a transport barrier in the outer region
of the plasma near the separatrix: improvement in
confinement is associated with the pedestal height,
i.e., the amount of pressure at the boundary of the
transport barrier, which is an area with reduced trans-
port coefficients. Achieving stationary H-mode is one
of the goals of the TRT project. At the same time, the
operating limits of the installation are determined by
stable plasma confinement with rather high values of
normalized  and the pressure on the pedestal. Lim-
itations on the height of the pedestal are based on the
assumption that the peeling–ballooning modes, local-
ized at the plasma boundary, are the triggering mech-
anism for the development of ELM. The peeling–bal-

looning modes are ideal magnetohydrodynamic
(MHD) instabilities caused by large pressure gradients
and the corresponding bootstrap current in the region
of the transport barrier near the plasma boundary. The
stability limits of such modes in the “pressure gradi-
ent–current density” plane greatly depend on the
shape of the plasma, and the trajectory in this plane,
along which the pedestal parameters evolve, depends
on the plasma collisionality parameter  [2, 3]. For
an ITER-like plasma, at high values of , bootstrap-
current generation becomes less efficient, and bal-
looning modes with relatively large wave numbers

 mainly limit the plasma parameters. At low ,
modes with smaller , which are destabilized by
a large current density, are the most unstable, also due
to reversal of the shear of the equilibrium magnetic-
field lines. Despite localization in the pedestal, the
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1120 MEDVEDEV et al.

Fig. 1. TRT equilibrium with a free boundary: (a) the level lines of the poloidal f lux function ψ. Plasma profiles for reference equi-
libria: (b) initial profiles, ; and (c) plasma pressure increased 5 times, . The density of the collisionless boot-
strap current and the limiting pressure gradient for ballooning modes are shown by dashed lines in the graphs for the longitudinal
current density and pressure gradient, respectively.
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peeling–ballooning modes have a complex spatial
structure and numerical calculations using two-
dimensional codes are necessary to determine their
stability. In calculations using the KINX code [4], the
plasma extends up to the magnetic-field separatrix.

In Section 2, the reference equilibrium configura-
tions of TRT are described and the stability limits
against the external kink modes with increasing pres-
sure are found. Section 3 describes the pedestal
model, its application to the reference equilibria and
the scaling for the width and height of the pedestal.
Calculations of the maximum stability parameters of
P

the pedestal, taking into account diamagnetic stabili-
zation, are presented in Section 4. Finally, conclusions
are made about the operating limits of TRT plasma.

2. REFERENCE EQUILIBRIUM 
CONFIGURATIONS AND STABILITY LIMITS

The equilibrium with a free boundary, calculated
by the DINA code, sets the geometry of the plasma for
studying the stability limits of the TRT (Fig. 1a). The
plasma parameters correspond to a large plasma cur-
rent  = 4.8 MA (toroidal field  = 8 T), but a lowpI 0B
LASMA PHYSICS REPORTS  Vol. 47  No. 11  2021



PLASMA STABILITY IN A TOKAMAK WITH REACTOR TECHNOLOGIES 1121

Fig. 2. Limiting values of the normalized beta for the sta-
bility of external kink modes with toroidal wave numbers

. The horizontal dotted lines show the values of 
for the equilibria from Fig. 1. 
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pressure (Fig. 1b). For a given separatrix coinciding
with the plasma boundary, while conserving the cur-
rent density profile  parallel to the
full helical equilibrium magnetic field  with volume
averaging  between the magnetic surfaces, and
proportionally increasing the pressure, it is possible to
obtain a sequence of equilibria for studying the plasma
parameters limiting the MHD stability (Fig. 1c).
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Fig. 3. (a) Plasma profiles for the reference equilibrium 
of external kink modes with toroidal wave numbers . Th
equilibrium. 
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A natural condition for the operation of a tokamak in
the stationary regime is the stability reserve with respect
to large-scale external kink modes, which are responsi-
ble for the Troyon limit. Figure 2 shows the stability
limits in units of normalized beta  for the modes
with toroidal wave numbers ; ,

, , where
, , a are the pressure averaged over the volume

of the plasma, the vacuum toroidal field at the geo-
metric center, and the small radius of the plasma,
respectively. We note that at higher values of n, dia-
magnetic stabilization may be significant [5]. Thus,
equilibrium with  (Fig. 1c), versus limiting

, is a conservative choice for the reference
equilibrium with a peaking pressure profile 
3.4; the internal inductance of the equilibrium current
density is .

Another variant of the equilibrium TRT configura-
tion corresponds to the stationary regime obtained
using the ASTRA code (Fig. 3) with a plasma current
of 4 MA. In this case, due to noninductive current
drive, the safety factor profile is nonmonotonic
( ), while the pressure peaking factor is sig-
nificantly lower ; the internal induc-
tance is  (Fig. 3a). For the same plasma
boundary, the limiting  with respect to the sta-
bility of the external kink mode  is lower (Fig. 3b)
compared to  for the first equilibrium
(Fig. 2). Taking into account the stabilizing effect of a
conducting wall, conformal to the plasma boundary
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with a coefficient of 1.3, makes it possible to increase
this limit to 2.7, provided that the  resistive wall
mode (RWM), which remains unstable due to the
finite conductivity of the wall, is stabilized.

It should be noted that the pressure limits are
related to the plasma cross-section shape factor, which
can be estimated as the product , where  is the
value of the safety factor on a magnetic surface with a
95% poloidal f lux fraction inside the separatrix. This
factor turns out to be less for TRT plasma with an
aspect ratio of  = 2.15/0.56 = 3.8, an elongation of
κ = 2 and a triangularity of δ = 0.2:  = 3.7–3.9
compared to  = 4.4–5 for ITER (A = 6.2/2 = 3.1,
κ = 1.8, δ = 0.4). Most likely, a lower shape factor is
the reason for lowering the Troyon limit compared to

 in similar ITER scenarios [5]. The limiting
beta can be increased with a larger triangularity, as well
as by optimizing the current and pressure profiles.

3. PEDESTAL MODEL
For self-consistent calculation of the bootstrap

current taking into account collisionality, the density
and temperature profiles are needed [2, 3]. The
EPED1 code [6] uses the following parameterization
in the pedestal for the electron density and tempera-
ture profiles:

(1)

where Δ is the pedestal width,  is the position of
the pedestal center (in general, these parameters may
differ for the density and temperature profiles) in units
of the normalized poloidal f lux . The coefficients ,

 are determined by the specified values of the den-
sity  and temperature  at the top of the pedestal
at  and the values on the separatrix

, . In the EPED1 model tested in experiments
in the DIII-D tokamak, the width of the pedestal
depends on its height in accordance with the following
scaling:

(2)

where  is the value of the poloidal beta at the top
of the pedestal  for the profiles (1); 

, ,  is the averaged
poloidal field on the separatrix,  is the perimeter of

the separatrix. In turn, the maximum values of 
for stability of the peeling–ballooning modes depend
on the width of the pedestal  as follows: ,

= 1n
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which corresponds to a decrease in the limit value of
the normalized pressure gradient α with increasing
pedestal width. In [7], the scaling of the limiting 
from the width is refined for a wider class of profiles
with an arbitrary position of the pedestal 
(  corresponds to the shift of the pedes-
tal to the separatrix and large values of the pressure
gradient at the boundary) using the depth of the ped-
estal ; in this case it is possible to use a
definition of the position of the pedestal top 
independent of the pedestal profile: 

, where the maximum is
taken along the pedestal, as for the pressure profile fit-
ted by a hyperbolic tangent: for profiles (1) .
This scaling is further generalized taking the depen-
dence of the stability limit on the normalized current

 into account [8]

(3)

where the coefficient  for a plasma with a cross-sec-
tional geometry similar to the ITER. Together with (2),
for the depth of the pedestal D close to Δ for the EPED1
profiles [7], this gives ,
which, taking into account the geometry of the plasma
in the ITER (  = 18.2/2) and with the approximate
replacement of , leads to a convenient
expression for the limiting pressure on the pedestal

(4)
For the value of the normalized beta on the pedestal

, this is equivalent to

(5)
for the width of the pedestal in units of the normalized
poloidal f lux

(6)
To obtain equilibria consistent with the pedestal
model for a given width Δ, which determines  in
accordance with (2), it is sufficient to set the plasma
density at the top of the pedestal and at the separatrix,
and to select the temperature according to , pro-
vided that the temperature at the plasma boundary is
low: the standard value  = 75 eV. The consistent
equilibrium is determined iteratively for a given vac-
uum magnetic field and the value , which varies
due to the current density in the pedestal. Figure 4
shows the pedestal profiles for Δ = 0.03 for different
density distributions. It is important to note that at a
lower and more peaked density, the bootstrap current
is higher, which leads to a nonmonotonic safety factor
profile q in the pedestal. In the case of low density, this
leads to a shear reversal even with a f lat density profile.
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Fig. 4. Pedestal profiles for the peaked ( , blue curve) and flat ( , red curve) density distribution in

the pedestal, Δ = 0.03,  = 0.156,  = 8 T: equilibrium with Fig. 1c, (a)  m–3,  = 1.68 and 1.60 keV,

 = 81 and 77 kPa,  = 4.87 and 4.76 MA and (b) equilibrium with Fig. 3a,  m–3,  = 3.46 and 3.35 keV,
 = 55 and 52 kPa,  = 4.0 and 3.95 MA. The dashed curves show the density of the collisionless bootstrap current and the

pressure gradient limiting for ballooning modes. Vertical dashed lines show the position of the center of the pedestal
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4. MAXIMUM STABILITY PARAMETERS 
OF THE PEDESTAL AND TAKING

INTO ACCOUNT THE DIAMAGNETIC 
STABILIZATION

4.1. Maximum Height of the Pedestal
and the Stability Diagram

In the framework of the EPED1 model, it is possi-
ble to construct a sequence of equilibria with an
increase in pressure at the top of the pedestal and a
corresponding increase in the width of the pedestal,
and then determine the limit against the stability of the
peeling–ballooning modes. Another way to study the
stability of the pedestal is to calculate stability dia-
grams [6]. In this case, the profiles of the pressure gra-
dient and the parallel current density can be propor-
tionally changed with a fixed width of the pedestal [8].
For each mode with a given toroidal wave number n,
the stability boundaries are found in the parametric
plane , where the normalized pressure
gradient at the center of the pedestal  is defined as
in [9]

α ||( , / )J J
ψmid
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ψ ψπ π

0
2 2
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4 2

dV Vdp
d d R
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and the parallel current density 
(averaging over the volume between the magnetic sur-
faces) is normalized by the average cross-sectional
density of the total plasma current .

4.2. Diamagnetic Stabilization
To estimate the effect of diamagnetic stabilization,

which occurs in the simplest model at  [10],
the diamagnetic frequency given by the following
expression [11] is: ,
where ψ is the poloidal f lux, , ,  are the pressure,
density, and charge of ions, and n is the toroidal wave
number. It is convenient to express  in terms of the
ion-cyclotron frequency  and the Alfvén
frequency :

where  is the mass of the ion,  is the vacuum mag-
netic field, R is the major radius of the plasma, and ρ
is the mass density on the magnetic axis. The fre-
quency of the diamagnetic drift of ions is calculated in
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Fig. 5. Normalized plasma mass density for calculating
growth rates.
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the middle of the plasma pressure pedestal, assuming
that . Diamagnetic stabilization is especially
effective for modes with a high toroidal wave number,
to which the value of the diamagnetic frequency is
proportional. To calculate the growth rate, the mass
density profile corresponding to ASTRA-code model-
ing is used (Fig. 5).
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To calculate the stability diagrams, the equilibria
from Fig. 4 were used for a fixed width of the pedestal

 = 0.03 (Figs. 6 and 7). The initial equilibria feature
the same poloidal beta  = 0.156. In
this case, the coefficient C from scaling (5) for the
height of the pedestal is lower than the standard limit
С = 3 for an ITER-like plasma: C = 2.2–2.1. This cor-
responds to the calculated stability of the initial equi-
libria from Fig. 6 (peaked pressure profile and rela-
tively high  = 0.81), but contradicts the stability of
the equilibria from Fig. 7 (nonmonotonic q,  =
0.56). In the latter case, taking into account diamag-
netic stabilization only gives stability: for deuterium
plasma in TRT with a density on the magnetic axis 
2 ×1020 (1020) m–3 and R = 2.15 m, we have 
0.0106 (0.015) for Fig. 6 (Fig. 7).

Tables 1 and 2 show the maximum parameters of
the pedestal according to the EPED1 method, i.e., for
a sequence of equilibria with profiles (1) at the width
of the pedestal (2): the density on the pedestal 
15 × 1019 and 5 × 1019 m–3. The coefficient 

,  is calculated like
scaling (5) for the limit value of the width of the ped-
estal Δ. It should be noted that the stability limits are
reached in equilibria with a reversed shear in the ped-
estal. In this case, it is possible to destabilize the ideal
modes when the resonant magnetic surface
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 for equilibria in Fig. 4a: f lat density (a); peaked density (b), in
sure gradient are approximately 1.3 and 1.2 times greater than the
ely. The crosses show the region of instability in small-scale bal-
tability on several magnetic surfaces in the pedestal. The shear

dashed thin line shows the current density corresponding to the
stability boundaries for peeling–ballooning modes with numbers
 lines show the stability boundaries for global modes with n = 3.
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Fig. 7. Comparison of the stability diagrams in the parametric plane  for the equilibria in Fig. 4b: (a) f lat density and
(b) peaked density. The light-colored lines show the stability boundaries for global modes with n = 1 and 3.
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approaches the region of a small shear and a large
pressure gradient (infernal modes [5]), as well as their
resistive analogues, including double tearing modes.
Thus, the achievement of current density in the pedes-
tal, which leads to reversal of the shear even before
destabilization of the peeling–ballooning modes, can
be interpreted as another limit of the pedestal stability.
On the other hand, the existence of three-dimensional
equilibrium configurations with a large contribution of
the harmonic  at the boundary and correspond-
ing to the nonlinear saturation of kink modes with a

= 1n
PLASMA PHYSICS REPORTS  Vol. 47  No. 11  2021
significant bootstrap current (quiescent H-mode
(QH)) can be associated with a small or reversed shear
in the pedestal [12].

The last two rows in Table 1 show that for this series
of equilibrium configurations, the  mode is
destabilized with a sharp increase in the increment, so
that diamagnetic stabilization is ineffective. This is
illustrated in Fig. 8, which shows the dependence of
the growth rate normalized by the diamagnetic fre-
quency at the local minimum value of , when the

= 3n

minq
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Table 2. Maximum values of the pedestal width, the number
of the most unstable mode and the coefficient in the scaling
of the pedestal height for equilibria with a f lat pressure pro-
file and nonmonotonic q,  1019 m–3 for different
density profiles in the pedestal with and without taking into
account the diamagnetic stabilization

n C

0.0281 15 1.85

diamagn. stabil. 0.0307 5 2.09

0.0276 15 1.85

diamagn. stabil. 0.0302 3 2.09

= ×ped 5n

Δlim

=sep ped/ 1n n

=sep ped/ 0.25n n

Table 1. Maximum values of the pedestal width, the number
of the most unstable mode and the coefficient in the scaling
of the pedestal height for equilibria with a peaked pressure
profile and monotonic q,  1019 m–3 for different
density profiles in the pedestal with and without taking into
account the diamagnetic stabilization

n C

0.0341 15 2.54

diamagn. stabil. 0.0362 10 2.82

0.0329 3 2.48

diamagn. stabil. 0.0329 3 2.48

= ×ped 15n

Δlim

=sep ped/ 1n n

=sep ped/ 0.25n n
plasma current changes, and demonstrates the struc-
ture of the mode. The maximum of the growth rate is
attained when the resonant surface 
approaches , i.e., just for the parameters of the
EPED1 equilibrium with the pedestal width Δ = 0.035.

5. CONCLUSIONS
Calculations of the ideal MHD stability of the

TRT-tokamak plasma, taking into account the pedes-
tal, indicate operating limits of the installation with
normalized , which are lower than those for
ITER-like plasma: this is due to a lower TRT-plasma
shape factor. For the same reason, as well as due to
reversal of the shear in the pedestal at lower bootstrap-
current values, the height of the pedestal is limited by
scaling (3) with the coefficient C = 2–2.5. Taking into
account the dependence  for the height of the ped-
estal in equilibria with the width of the pedestal (2), it
is necessary to correct the scalings (4) and (5):

, . The low shape factor
is partially compensated by a large Shafranov shift for
equilibria with a fixed pressure profile and large .
Increasing the triangularity of the plasma cross section
is the most effective way to increase the maximum
beta and the height of the pedestal. The TRT poloidal

=/ 11/3m n
minq

β ≈N 2

1.6С

≈1.6(2/3) 0.5 ≈1.6(2.5/3) 0.75

βp
P

coil system allows the formation of plasma configura-
tions with different triangularity [13], which, along
with the control of profiles using additional heating
and current-drive methods, will allow optimization of
the plasma parameters necessary to achieve the
expected characteristics of the installation. Under the
assumption of a high plasma-confinement mode
(H-mode) and in the presence of the type-I ELMs, the
pulse load on the TRT divertor plates can be estimated
as , where 

 [14]. At a pressure on the pedestal
of 80 kPa and a plasma volume of  = 24.2 m3,
this estimate gives  = 150–300 kJ.
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