Skip to main content
Log in

System of Electron Cyclotron Heating at the TRT Tokamak

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Main parameters of the possible system of electron cyclotron resonance heating of the plasma for the compact tokamak with strong magnetic field (TRT) are presented. Preliminary estimates show that, to deposit radiation with calculated power of 10 MW into the plasma at pulse duration of 100 s, 12 1-MW gyrotron complexes will be required that operate at a frequency of 230 GHz. Preliminary calculations of the main components of the system are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. F. Wagner, A. Becoulet, R. Budny, V. Erckmann, D. Farina, G. Giruzzi, Y. Kamada, A. Kaye, F. Koechl, K. Lackner, N. Marushchenko, M. Murakami, T. Oikawa, V. Parail, J. M. Park, et al., Plasma Phys. Control. Fusion 52, 124044 (2010). https://doi.org/10.1088/0741-3335/52/12/124044

  2. E. Poli, G. Tardini, H. Zohm, E. Fable, D. Farina, L. Figini, N. B. Marushchenko, and L. Porte, Nucl. Fusion 53, 013011 (2013).

  3. T. Omori, F. Albajar, T. Bonicelli, G. Carannante, M. Cavinato, F. Cismondi, C. Darbos, G. Denisov, D. Farina, M. Gagliardi, F. Gandini, T. Gassmann, T. Goodman, G. Hanson, M. Henderson, et al., Fusion Eng. Des. 96−97, 547 (2015). https://doi.org/10.1016/j.fusengdes.2014.12.023

  4. T. P. Goodman, F. Felici, O. Sauter, and J. P. Graves, Phys. Rev. Lett. 106, 245002 (2011). https://doi.org/10.1103/PhysRevLett.106.245002

  5. M. A. Henderson, R. Heidinger, D. Strauss, R. Bertizzolo, A. Bruschi, R. Chavan, E. Ciattaglia, S. Cirant, A. Collazos, I. Danilov, F. Dolizy, J. Duron, D. Farina, U. Fischer, G. Gantenbein, et al., Nucl. Fusion 48, 054013 (2008). https://doi.org/10.1088/0029-5515/48/5/054013

  6. M. K. A. Thumm, G. G. Denisov, K. Sakamoto, and M. Q. Tran, Nucl. Fusion 59, 073001 (2019). https://doi.org/10.1088/1741-4326/ab2005

  7. G. G. Denisov, A. G. Litvak, V. E. Myasnikov, E. M. Tai, and V. E. Zapevalov, Nucl. Fusion 48, 054007 (2008). https://doi.org/10.1088/0029-5515/48/5/054007

  8. A. G. Litvak, G. G. Denisov, V. E. Myasnikov, E. M. Tai, E. A. Azizov, and V. I. Ilin, J. Infrared, Millimeter, Terahertz Waves 32, 337 (2011). https://doi.org/10.1007/s10762-010-9743-8

    Article  Google Scholar 

  9. A. V. Krasilnikov, I. M. Abdyuhanov, E. V. Aleksandrov, A. G. Alekseev, V. N. Amosov, N. V. Antonov, N. I. Arkhipov, A. V. Burdakov, I. N. Chugunov, G. G. Denisov, A. A. Gervash, M. V. Ivantsivskiy, Y. A. Kaschuk, S. E. Khomyakov, V. A. Krasilnikov, et al., Nucl. Fusion 55, 104007 (2015). https://doi.org/10.1088/0029-5515/55/10/104007

  10. A. V. Krasil’nikov, S. V. Konovalov, E. N. Bondarchuk, I. V. Mazul, I. Yu. Rodin, A. B. Mineev, E. G. Kuz’min, A. A. Kavin, D. A. Karpov, V. M. Leonov, R. R. Khayrutdinov, A. S. Kukushkin, D. V. Portnov, A. A. Ivanov, Yu. I. Bel’chenko, et al., Plasma Phys. Rep. 47, 1092 (2021).

  11. A. V. Chirkov, G. G. Denisov, and A. N. Kuftin, Appl. Phys. Lett. 106, 263501 (2015). https://doi.org/10.1063/1.4923269

  12. V. L. Bakunin, Y. A. Guznov, G. G. Denisov, N. I. Zaitsev, S. A. Zapevalov, A. N. Kuftin, Y. V. Novozhilova, A. P. Fokin, A. V. Chirkov, and A. S. Shevchenko, Tech. Phys. Lett. 44, 473 (2018). https://doi.org/10.1134/S1063785018060020

    Article  ADS  Google Scholar 

  13. V. L. Bakunin, G. G. Denisov, and Y. V. Novozhilova, IEEE Electron Device Lett. 41, 777 (2020). https://doi.org/10.1109/LED.2020.2980218

    Article  ADS  Google Scholar 

  14. G. G. Denisov, A. V. Chirkov, V. I. Belousov, A. A. Bogdashov, G. I. Kalynova, D. I. Sobolev, Y. V. Rodin, E. M. Tai, V. I. Ilin, S. Y. Kornishin, M. L. Kulygin, V. I. Malygin, E. A. Soluyanova, V. V. Parshin, and M. Y. Shmelev, J. Infrared, Millimeter, Terahertz Waves 32, 343 (2011). https://doi.org/10.1007/s10762-010-9756-3

    Article  Google Scholar 

  15. M. K. Thumm and W. Kasparek, IEEE Trans. Plasma Sci. 30, 755 (2002).

    Article  ADS  Google Scholar 

  16. J. Anderson, J. Doane, C. Moeller, H. Grunloh, R. O‘Neill, M. Brookman, M. Smiley, and D. Su, EPJ Web Conf. 203, 04001 (2019).

  17. J. L. Doane, Fusion Sci. Technol. 53, 159 (2008).

    Article  Google Scholar 

  18. P. J. B. Clarricoats, A. D. Olver, and S. L. Chong, Proc. Inst. Electr. Eng. 122, 1173 (1975).

    Article  Google Scholar 

  19. C. Lau, M. C. Kaufman, E. J. Doyle, G. R. Hanson, W. A. Peebles, G. Wang, and A. Zolfaghari, IEEE Trans. Microwave Theory Tech. 67, 38 (2019). https://doi.org/10.1109/TMTT.2018.2879808

    Article  ADS  Google Scholar 

  20. J. L. Doane, in Infrared and Millimeter Waves. Vol. 13, Ed. by K. J. Button (Academic, New York, 1985), p. 123.

    Google Scholar 

  21. C. Dragone, IEEE Trans. Microwave Theory Tech. 28, 704 (1980).

    Article  ADS  Google Scholar 

  22. E. A. Nanni, S. K. Jawla, M. A. Shapiro, P. P. Woskov, and R. J. Temkin, J. Infrared, Millimeter, Terahertz Waves 33, 695 (2012).

    Article  Google Scholar 

  23. K. Ohkubo, S. Kubo, H. Idei, M. Sato, T. Shimozuma, and Y. Takita, Int. J. Infrared Millimeter Waves 18, 23 (1997).

    Article  ADS  Google Scholar 

  24. B. Z. Katsenelenbaum, Radiotekh. Elektron. 8, 1111 (1963).

    Google Scholar 

  25. B. Z. Katsenelenbaum, High-Frequency Electrodynamics (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  26. G. G. Denisov, V. I. Malygin, A. I. Tsvetkov, A. G. Eremeev, M. Yu. Shmelev, V. I. Belousov, I. S. Baber, N. I. Karpov, I. I. Leonov, E. A. Kopelovich, M. M. Troitskii, M. V. Kuznetsov, I. A. Varygin, K. A. Zhurin, B. Z. Movshevich, et al., Radiophys. Ouantum Electron. 63, 332 (2020). https://doi.org/10.1007/s11141-021-10058-y

    Article  ADS  Google Scholar 

  27. B. Z. Katsenelenbaum and V. V. Semenov, Radiotekh. Elektron. 12, 244 (1967).

    Google Scholar 

  28. A. V. Chirkov, G. G. Denisov, M. L. Kulygin, V. I. Malygin, S. A. Malygin, A. B. Pavel’ev, and E. A. Soluyanova, Radiophys. Ouantum Electron. 49, 344 (2006). https://doi.org/10.1007/s11141-006-0067-4

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-79-30071).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Belousov, G. G. Denisov or M. Yu. Shmelev.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belousov, V.I., Denisov, G.G. & Shmelev, M.Y. System of Electron Cyclotron Heating at the TRT Tokamak. Plasma Phys. Rep. 47, 1158–1168 (2021). https://doi.org/10.1134/S1063780X21110143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21110143

Keywords:

Navigation