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Abstract—A method is proposed for tomography of the distribution function of energetic ions that are adia-
batically trapped in an open magnetic trap, according to the diagnostic data by the method of collective
Thomson scattering. This method is based on measurements of the scattering spectra from successive plasma
cross sections corresponding to different values of the magnetic-field strength along a single line of force. It
is shown that the problem of restoring the ion distribution function in the velocity space from the measure-
ment data in this situation is reduced to an integral equation of the first kind that allows an analytical solution.
Several ways to construct exact and approximate solutions of the resulting integral equation are considered.
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1. INTRODUCTION

Scattering of high-power probing millimeter radia-
tion by thermal fluctuations of magnetically active
plasma (the so-called collective Thomson scattering)
allows one to obtain information on the velocity distri-
bution of plasma ions with good spatial and time reso-
lutions [1]. The possibilities of analyzing scattered-
signal spectra for diagnosing the distribution function
of fast ions in toroidal magnetic traps were demon-
strated experimentally on the TFTR [2], JET [3],
TEXTOR [4-7], ASDEX-U |6, 8] tokamaks, on the
W7AS stellarator for diagnosing the temperature of
thermal ions as well as the lower-hybrid instability of
plasma [9—11], on the LHD stellarator for diagnosing
the distribution of both fast and thermal ions [12],
and, more recently, on the latest W7X stellarator for
thermal-ion temperature diagnostics [13]. Along with
optical methods and neutron and gamma-ray spec-
troscopy, collective scattering of millimeter radiation
is one of the main methods for diagnosing the distri-
bution function of fast ions in tokamaks [ 14]; in partic-
ular, this method is considered as the main technique
for diagnosing thermonuclear alpha particles in the
ITER tokamak reactor [15].

Recent advances in the methods for confining
thermonuclear plasma in existing open magnetic traps
[16—20] and planning of new physical tasks for next-
generation open magnetic traps [20, 21] have led to the
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fact that methods for diagnosing plasma in open mag-
netic traps are now being actively improved. An
important possibility for diagnosing the distribution
function of energetic ions is the implementation of the
method for recording the spectra of collective Thom-
son scattering, which was tested in toroidal magnetic
traps [22], in an open magnetic trap.

Following paper [22], we note the main features of
the collective Thomson scattering in plasma of a large-
scale open magnetic trap using the example of the
largest such GDT (gas-dynamic trap) installation that
currently operates at the Budker Institute of Nuclear
Physics (Siberian Branch, Russian Academy of Sci-
ences). In this setup, plasma is divided into two frac-
tions: background plasma that is confined in the gas-
dynamic regime and high-energy ions resulting from
the bombardment of the background plasma by beams
of neutral atoms with energies of 20—30 keV [23].
Energetic ions, first, make up a significant part of all
plasma ions (20% in the central cross section and up to
100% at the points of turn); second, they are held in
the trap in a collisionless adiabatic mode. The fre-
quency of collisions of fast ions with electrons and ions
of background plasma is much lower than the fre-
quency of bounce oscillations between the points of
turn in the magnetic field. In contrast to toroidal sys-
tems, the magnetic field modulus in an open trap
changes greatly (e.g., in the GDT installation, the mir-
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ror ratio exceeds 30); therefore, the distribution func-
tion of energetic ions is substantially different in differ-
ent cross sections of the trap [22]. This, on the one
hand, imposes additional restrictions on the spatial
resolution of the diagnostic method and, on the other
hand, can be used to restore the particle distribution
function.

Let us recall that the plasma diagnostics by the col-
lective scattering consists in the recording of the spec-
tral power density of scattered radiation dP./dm,
which in turn is proportional to the spectral density of
plasma density fluctuations S;(k,®), where ® =
o, — o; and k = k, —k; are the differences of the fre-
quencies and wave vectors of probing and scattered
radiations. In the experiment, the k direction is usually
fixed by the geometry of scattering, while ® changes (it
falls within the spectrum-analyzer band). Therefore,
we have a one-dimensional scattering spectrum that
directly allows restoring of the one-dimensional ion
distribution function in the velocity projections to the
k direction:

o F(w/k), F(u)= j £ — vk/k)d,

where f(v) is the local function of the ion or electron
distribution over the three-dimensional velocity
space, which is calculated in the scattering volume.
For the experiment on the GDT installation that was
proposed in [22], the scattering angle and the band of
analysis with respect to @ are chosen so that the spec-
tral density of fluctuations is determined by the one-
dimensional distribution function of fast ions.

Hereafter, we assume that for a particle that rotates
in a magnetic field, all directions of the velocity across
the magnetic field are equally probable; therefore, an
ensemble of such particles can be characterized by a
two-dimensional distribution function f(v,v,) in the
transverse and longitudinal velocity-vector compo-
nents with respect to the magnetic field. Taking
advantage of this natural symmetry, we can rewrite the
expression for the one-dimensional distribution func-
tion as

2T oo oo

P [ o)
0 — 0

X 8(u—vjcos®—v, sinOcosQ)v,dv,dvide,

(1)

where 0 is the angle between the k vector and the mag-
netic field direction. Measuring the scattered-signal
spectrum at a given scattering angle does not allow one
to restore the full distribution function f(v,v,), but
such a restoration is possible in principle using the
two-dimensional function F(u,9), i.e., if we perform
measurements for a certain set of scattering angles.
This approach to the recovery of the distribution func-
tion is close to the classical tomography problem,
which can be solved in this case via standard mathe-
matical methods for solving ill-posed inverse prob-
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lems. This method was proposed and theoretically
analyzed in [24], demonstrated on synthetic data [25],
and successfully implemented when processing the
actual experimental data [14].

However, a wide variation of the scattering angle is
not always possible and requires a rather sophisticated
geometry of the lines of injection and reception of
microwave radiation. In the case where measurements
can be performed at points that correspond to different
values of the magnetic field along the same line of
force, another approach is possible: we can take
advantage of the fact that if the electron distribution
function is recalculated between these points in a
known way, we can also restore the full distribution
function by comparing the scattering spectra at these
points. In this paper, we mathematically formulate the
problem of such a recovery, show that such a problem
can be reduced to finding solutions to an integral
equation of the first kind, and demonstrate ways to
solve this equation.

2. THE INTEGRAL EQUATION

Let us consider formula (1) for an arbitrary point
along a magnetic-field line of force:

wro = [[afi)

X O (u —vjcos®—v!sinBcos (p') vidvidvide,

where fp(v,v1) is the distribution function in the
cross section where the magnetic field strength is
B = RB_. ., and the local mirror ratio R plays the role

'min >

of the coordinate along the magnetic field line of
force. Hereinafter, we use the notation v, for the
velocity in a specified cross section R and v for the
velocity in the central cross section R =1, which cor-
responds to the minimum magnetic field value. For an
ion that performs collisionless motion in a smoothly
inhomogeneous magnetic field, two integrals of
motion can be introduced

vi/R = const,
v‘f + vf +2eZm®' = const.

The first integral corresponds to the conservation of
the magnetic moment, while the second corresponds
to the conservation of energy with allowance for the
electrostatic ambipolar potential ®'. The characteris-
tic values of the ambipolar potential drop along the
line of force are determined by the target-plasma tem-
perature [18, 26]; therefore, it can be ignored when
considering the dynamics of energetic ions. As a result,
PLASMA PHYSICS REPORTS  Vol. 47
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the relationship between the velocities v; ; and v | for
fast ions can be found in the explicit form

vy = JVRv s
' 2 2
vi=wl-(R-1)vi/v).
By virtue of the Liouville theorem, the phase volume
is conserved; therefore, the ion distribution function
in the given cross section R is expressed through the

distribution function in the central cross section R =1
of the trap in the form:

Jr (V|'|»Vl) = h (V||aV¢)>

where the velocities at the minimum of the magnetic
field are expressed through the velocities in the cross
section R according to transformations (2).

For simplicity, we choose the longitudinal scatter-
ing geometry 0 = 0 and take the integral over ¢'. We
obtain

()

F (u,R,0) = 27:? TfR (vﬁ,v’l)ﬁ(u - vﬁ)vldedVﬁ.
—oo ()

Further, we change to the velocities at the magnetic-
field minimum in the integrand:

I fi(vsvy)

F(u,R)=
VH >(R- 1)
21 Ry, dv dv

x8(u— 1~ (R VL/Vlz)\/l— R=1)v2 /v

Formally, the integration is performed over the

domain of vj > (R —1)v}, into which the half-plane
of e R, v > 0transforms. However, the d-function

is equal to zero everywhere beyond this domain; there-
fore, we can extend the integral to the entire space of

velocities v, v, . In addition, owing to the symmetry of
the v, distribution function for trapped ions that is
expected in an open trap, we can consider only the
domain of u > 0 for F (u, R); in this case, the subinte-
gral d-function is equal to zero in the domain of
v; < 0. Taking this into account, we can rewrite the
integral in a simpler form:

(u,R) .”f VH,VJ_ (u —VH\/] R-1 VJ_/V”)
2nRv dv dv
\/1 R-1)V: /v

Taking the integral over v;, we obtain
F(u,R) = 2nRj f (\/Lﬂ +(R-1) Vi,vl)vldvr (3)
0
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This is the main relationship that will be analyzed under
the assumption that we know the continuous function
F (u, R) from the results of the plasma diagnostics. Of
course, when using the data from an actual experiment
to construct such a function, we will have to use an
interpolation over a discrete set of measurements.

For the compactness of the subsequent calcula-
tions, we introduce a new notation

Fex,y) = £ (vodx,voy),
G (&w) = (mR)'F(v,WE R),
E=u’/ve, w=R-1,

where v, is any typical velocity introduced only for the
normalization. As a result, we come to the integral
equation

2,2 2,2
x:VH/Vo, y=vi/vo,

G(&w) = [ f(E+wy,y)dy. “

The mathematical statement of the recovery prob-
lem consists in finding the function f(x,y) using a
specified function G (§ w). In this case, we consider
that the variables &, w, x, y change in the interval

[0,00). The function f (x, y) is a real positively defined
piecewise-smooth function, the integrals of which
over any finite domain are limited. It should be noted
that the real distribution function must also vanish
starting with certain values of the variables x, y
because of relativistic limitations. However, for the
convenience of calculating analytic integrals, we will
not require the fulfillment of this condition, but
instead reserve the freedom to impose restrictions on

the law of decay of the function f (x, y) for x,y — eo.

3. THE FOURIER TRANSFORM

Since all the arguments in Eq. (4) are given on the
positive half-axis, it is natural to use the Fourier cosine
transform to find a solution. We define

(x,y)cos(xv)dx,

O'—:X

(&)

f(x,p) '[F v,y)cos(xv)dv.

A necessary condition for these equalities is the con-

vergence of the integrals J.: f (x,y)dx for all values of

y 2 0. After transformation (5), Eq. (4) is rewritten in
the form

G (& w) = TZE [[ £ (v, 9)cos (v + vwp)dvav.  (6)

00



506

As is seen, the Fourier cosine transform preserves the
integral character of the equation, but reduces it to a
normal form that admits a standard solution. This
solution is presented in the next section; however,
before proceeding to it, let us make a digression of a
methodological character.

The functions G (§,w) and f(x, y) are fundamen-
tally defined only at positive values of their parame-
ters. Let us forget for a while about this and extend all
our dependences to the domain of & w,x € (—eo,c0);
however, it is considered as before that y > 0. We then
can apply a complex Fourier transform in the variables
€, w, x to Eq. (4):

1 —ike&—ik,w
G (& w) G (ke, g dkedk,,.
(& = i i gk )e :
In this case, Eq. (4) takes the form

G (ke k,)

- Ln z z ]j F (ke p) ") gy ke dEdw

= 2nT Tf (kys )8
—oo ()

j (ke» y) 8 (k, — key) dy.
0

— k)8 (k, — k.y)dydk,

Next, we take into account that the integral is taken
only for positive y values and come to

2TEf ky;,
G (kesk) = {0 kek <0.

For k:k,, 2 0, this relationship gives a simple algebraic
connection between the Fourier transforms of the pre-
set function G and the desired function f. However, for

k:k,, < 0, we obtained an additional restriction on the

kek,, > 0

function G, which must be taken into account when
extending the definition of its original G (§,w) to the
domain of negative arguments. For the essence of this
restriction to be understood, we can transfer the
uncertainty and restrictions of the function G at
&, w < 0 to the uncertainty and restrictions of the func-

tion G in the domain of k:k, 2 0. Let us take advan-
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tage of the fact that G (&, w) and f (x,y) are real, i.e.,

G(kiﬂkw):G* (_kﬁﬂ_kw) and f( xvy) f* (_ x’y):
where the asterisk designates the complex-conjugation
operation. Without a loss of generality, we consider
that the distribution function is redefined symmetri-
cally in the nonphysical domain: f(x,y) = f(-x, ).
The complex Fourier transform then turns into cosine
transform (6), f(k..y) = f(~k.y) and G(k;,k,) =

G~(—k§,—kw). Using these conditions, we have

G(&w) =éﬁé‘<kg,kw)

% (eik§&+fkww + e—fkg&—l‘kww)dkgdkw

J' J.G ke, k) cos (ke + k,w) dkedk,,.
00

This equation is equivalent to Eq. (6). Thus, if the
function G (&, w) is defined correctly in the domain of
&, w < 0, then, using a complex Fourier transform, we
can easily solve Eq. (4). However, the problem of cor-
rectly redefining G (&,w) is anyway reduced to the

solution of Eq. (6), which is generated by the Fourier
cosine transform.

4. SOLUTION VIA THE MELLIN
INTEGRAL TRANSFORM

Equation (6) is formulated for an unknown func-
tion of two variables. Despite its simple form, we were
unable to find this equation in mathematical reference
books. Nevertheless, its solution can be constructed
based on the technique that was developed for solving
one-dimensional linear integral equations of the first
kind [27].

Let us introduce the Mellin integral transform [28]

Ll G+ico

F(s) = [ £ (x)x"ax, f(x)=2Lm_ [ Fs)x7ds

0

The integral in the second expression is taken in the
sense of the principal value, while the parameter ¢

belongs to the interval 6 € (0,,0,), whose boundaries
are determined by the convergence of the integrals

1 oo
J.f(x) x¥dx < oo, J.f(x) X7 dx < oo,
0 I

The convergence of these integrals for some G,, G, at
O, <0, is the criterion for the applicability of the Mel-
lin transform for the function f(x).

PLASMA PHYSICS REPORTS  Vol. 47 No. 6 2021
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Let us multiply the left and right sides of Eq. (6) by

e —1 -1 . . . .
““w"™ integrate over € and w from zero to infinity,

and obtain

0 0o

G (ss) =2 [[ F.(v)

00 )
X J.J.cos (vE +vwy) & W™ dEdw |dydv.

The left side of Eq. (7) contains the two-dimensional
Mellin transform for the function G (&, w):

é(%,%g::TTG(@qu%I e dw, (8)

the inverse transform to which has the form

G +ico G, +ico

AN

Gg—l‘>q O, —ice

G(&w & wvds, ds;.

The range of changes of the parameters 6; = Re(Sg),

o, = Re(s, ) will be determined after the finish of the
transformation of the right side of Eq. (7). The expres-
sion in square brackets in (7) is the Mellin transforma-
tion for the kernel of integral transform (6). We trans-
form this expression by moving to the new integration
variables:

E=1¢,

The expression in square brackets can now be calcu-
lated using the tabulated Mellin transforms for trigo-
nometric functions [28]:

W= Vvyw.

[..]= %“’cos (E+ w)?ﬁ‘lwsw“dédw
vy o0

[l B)cos ()~ sin@sin 4]

x Efﬁ oo dEdiw = ﬁr(sé)r(sw)
14 y

(€))

X COS (g(sg + sw)),

where I'(...) denotes the gamma function, and the cal-

culations are correct for Re(s:), Re(s,,) € (0, 1). After
the above transformations, expression (7) takes the
form

GA(sg,sw) = T%F(sé)l"(sw)cos (g(sg + sw))

0 oo

X J-J‘ F.(v,yy "y ™dydyv.

00
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The remaining integrals are the Mellin transform for
the Fourier transform of the distribution function with

the arguments
s, =l=s,, 5 =1=5-s5,.

Thus, after the Mellin transforms, the original integral
equation is simply an algebraic product of the trans-
forms with the substitution of variables:

G (se.8,) = il"(sé)l“( )cos(z(sg +s ))
x F,(1-s:—s,,1-

(10)
Sw),s

where

E(s,.s,) HF(vy ST v dy, (11)

O, +ico Gy+ioo

S]] EGes)y

E’(V’y) = _47_:

s,
"dsds,. (12)
G, —leo G, —ieo
Let us determine the required restrictions on
Re(s,), Re(s,). We depart from the existing con-

straints for integral transform (9): Re(sg), Re(s,)e
(0, 1). For Mellin transform (8) for the function

G (€ w), this range of the parameters requires that the
positively defined function G (&, w) have no singulari-
ties at & = 0 and w = 0 and decay at infinity no slowly
than 1/ (Ew). The conditions for Mellin transform (11)

for the function F,(v,y) are determined somewhat
more difficultly because it is not positively defined.

Let us express the desired integral through f (x, y):
]t s,—1 _ Tr s,—1
F (v,y)v" dv = H‘f(x,y)cos(xv)v dvdx
0 00

=T(s,)cos (Tcsv/2)J.f(x,y) x"dx.

The integral over v is taken explicitly and corresponds
to the Mellin transform for cos (xv) [28]. The conver-
gence of the integral with respect to v requires the
additional condition Re(s,) > 0; if it is met, then tak-
ing the conditions of Re(s:), Re(s,)e (0,1) into
account, the integral over x converges, provided that
/(x,y) has no singularities at x — 0 and decreases
more rapidly than 1/ x for x — . When considering
the analogous transform with respect to y, we obtain
that the convergence requires that f (x, y) have no sin-
gularities at y — 0 and decay more rapidly than 1/ y
for y — oo; in this case, additional limitations on
Re(s,) € (0,1) do not arise. We note that the condi-

tions imposed on the distribution function are fulfilled
automatically, if the natural physical requirement of
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finiteness of the number of particles and the total
kinetic energy in the system is imposed. Next, it can be
shown that if the above conditions are met for f, the
analogous conditions are also met for the function G.
Finally, for the applicability of the Mellin transforms,
it is sufficient to require that the constants in the Mel-
lin transforms belong to the following intervals:

Re(s,) € (0,1), Re(s,)e (0,1),
Re(s, —s,) € (0,1).
The solution of Eq. (6) can be represented in the

form of the following sequence of linear transforma-
tions:

(13)

GEw) —E—G(sz,s,,)

12)

— 0 F(s,,5,) —2 s F(v, ) —2— f(x, ).

The numbers of the formulas that describe transforms
are indicated above arrows. This chain is expressed in
the explicit form as

° O, -Hoo(S +ic0 o0 oo

ren=] [ ] [[xec

0 ©,—ic G,—ico 0 0
1 ésﬂv w vy cos(xv)
4’ T (s, —s,)T(1 - s,)sin (7, /2)
Changing the order of integration allows one to obtain

the solution in the standard form for a linear operator
in the form of an integral convolution

w)d&dwds ds,dv,

0 oo

£ ()= [ [ PEwx.»)G (& w)deaw

00
with the kernel

(14)

00 G, +ico G +ico
P(Ew,x,y) :I j I Kds ds,dv.
0 ©,—ico 0, —ic
The latter expression can be simplified, since, as
already noted, the integral over v is taken explicitly
and corresponds to the Mellin transform for cos (xv);

the resulting trigonometric functions are cancelled,
and the following expression remains:

1
P(g,W,X,J’) = T
4r

sy—sv—l s,-1 =Sy _
€ X" (wy) P T(1 SV)dsyds
F(Sy - SV)F(I - Sy)

G, +ico G +ieo

< |

O, —i> G,

15)

Ve

—joco
This expression can be considered as the definition of

a function of two but not four variables, since P§2
depends only on the combinations of wy/& and x/&.
In the future, we will not need this self-similarity
property, however, it allows tabulation of the kernel
P(E,w, x, y) using a two-dimensional table or interpo-
late it using a function of two variables. This can be the
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basis of an efficient practical way to calculate the two-
dimensional convolution (14).

Let us prove that the resulting inverse integral oper-
ator actually allows restoring of the function f(x,y).
Operator (14) with kernel (15) is applied to the func-

tion G (§, w) of the most general form (4):

o0 oo

[[6(&w) P& w,xy)deaw

00

= —J?I]:[If(ﬁ + wy',y')dy']

6 b0 O ki o s ot s, (16)
" J & x" (wy) " I(1-s,)
G, —ieo G, —ico F(Sy - SV)F(I - sy)
X ds,ds,dEdw.
Next, we change the variables, § = x' —wy', and

change the order of integration so that the integrals
over x' and y' are taken last of all,

00 00 0o

_”I&S R F(E+wy',y)dy dEdw
000
0000 x' /y"

G T oy

In the resulting expression, the integral over w is the
known tabulated integral [28]:

w  f(x',y")dwdx' dy'.

x'/y'
J' (X' _ wy,)sy—sv—l w—sydw
0 (17)
— yvsy—sv—l f' ) F(l - sy)r(sy - SV)
y' r'(l-s,) ’

that converges at Re(s, —s,) >0, Re(l-s,)>0,
x'/y' > 0. Substituting (17) into the initial expres-
sion (16), we obtain that all gamma functions are can-
celled and from the remaining part, the direct and
inverse Mellin transforms are taken [28], which form a
delta function:

0 0o

”G(&v w) P (E,w,x,y)dEdw

NSEORD)

X f(x',y")ds,ds,dx" dy' =_”f (x',»)8(x —x")

X8(y—y)dx'dy' = f(x,).

Thus, we have shown that the recovery of the original
function is correct within the limits of the applicability

00 00 G, +ico G,+ico

w1 T

0 0 6, —ic G,—ico
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of the Mellin transforms. In Appendix, one can addi-
tionally find several particular examples of the resto-
ration of the distribution function, which appeared on
the way to finding a general solution and seemed to be
quite interesting.

It should be noted that the mathematical proof of
the existence and uniqueness of solutions to Eq. (6) for
arbitrary G is quite laborious, since it is an equation
with an alternating kernel [27]. However, the fact that
as G, we take only the functions that are transforms for
some quite rapidly decreasing function f, which arises
from the physical problem, is sufficient for our solu-
tion to exist and be determined by relationships (14)
and (15).

5. ORTHOGONAL-POLYNOMIAL EXPANSION
OF THE SOLUTION

Although we managed to present an analytical
expression for the inverse operator in quadratures,
nevertheless, this solution is largely formal and incon-
venient for an actual application. Therefore, here, we
propose another way to invert Eq. (4).

Using the given function G (§,w), we can restore

the discrete set of functions G, (x) defined as

G, (x) = G(x,0),

Gy (x) = lim | ain@],ww&,,

x& &
= }g%.”‘ J. ék’ dék d&,dE,.
It is easy to show that
Ge(x) = [y f (x.p)dy, (18)
0

i.e., these functions describe the dependences of the
moments of the distribution function in the variable y
on the variable x (recall that x and y are, respectively,
the kinetic energies of the longitudinal motion and
cyclotron rotation of a particle).

Linear combinations of the functions G, can be
composed so as to provide the formation of some poly-

nomials that are orthogonal on the [O,oo) interval. Let
us consider Laguerre polynomials as the basic example

[29]:
7 dn -y n —(n (_l)k k
L(y) =54 (ey") = Ll
) n!dy"( d ) ;[kj K
with the orthogonality condition

[LO) Lp)e?dy =3,

0
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Here, [Z] denotes a binomial coefficient. We introduce
the notation L, [G, (x)] for the formal Laguerre poly-
nomial Z, (y), in which the replacement is performed:

V' > G, (x). In view of (18), we obtain a set of inte-
gral equations for n = 0,1,2...

o

LG ()] = [ L,(y) f (x.)dy.

0

(19)

Here, the variable x is merely a parameter, and the
variable y can be used to expand the distribution
function in terms of the full system of Laguerre poly-
nomials:

y)exp(—y), (20)

xy) = fu(x)L
n=0
where f, (x) are the expansion coefficients that are
determined independently for each x value. Owing to
the orthogonality of the Laguerre polynomials,
Egs. (19) assume the form

L,[G, (x)] = £, (x).

Thus, we have constructed the solution of Eq. (6) in
the form

ZZ( ] Gu(x)L, (¥)exp(-y). (1)

n=0 k=0

The resulting series has an important property that
ensures its effectiveness in solving the physical prob-
lem. The partial sum of the first NV terms over n gives
the function f, that has the same set of the first N
moments in the variable y as the desired function has;
thus, if we substitute f, into relationships (18), they
then are valid strictly for £k =0, 1, ..., N —1 for all x.

Correspondingly, the remainder term f — f,, has the
zero first N moments. For example, considering only
the first three terms yields the correct mean value and
variance of the distribution in y, which depend on x as
a parameter.

Let us discuss the convergence of the resulting
series. To do this, it is sufficient to consider the ana-
logue of Parseval’s theorem for expansion (20), which
follows from the conditions for the orthogonality of
Laguerre polynomials,

]if2 &) e’dy
S WA ACI A AT

. zf ©)
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Fig. 1. The partial sums of the first 11 and 101 terms of series (21) for the functions g, (on the left) and g; (on the right). The solid
black line shows the initial functions; gray and black dashed lines show the sums of the first 11 and 101 terms of the series, respec-

tively.

The sum of the squares of the expansion coefficients is
limited only if the integral on the left side converges,

i.e., if the function f(x, y) decays with y more rapidly

than exp (—y/ 2). To estimate the rate of convergence,
let us consider a function in the form

[ =g(x)exp(—ay). 22)

The coefficients f, (x) of expansion (20) for this func-
tion are

o

jL (v)exp(-ay)dyg(x) =

0

f (%) a’ (1-1/a)" g(x).

It can be seen that when the convergence condition is
met, the amplitude of the coefficients decreases expo-
nentially with increasing ». That is, for an infinitely
smooth function, the coefficients of series (21) decrease
exponentially. In other words, if the series converges, it
converges quickly. In the case where there is a disconti-
nuity in the value of a function or its first derivative, the
rate of convergence can also be estimated using partic-
ular examples. Let us consider the expansion in terms of
Laguerre polynomials for the model functions
g =St(1—-y)and g =(1-y)St(l — y) that have dis-
continuities of a value of the function and the first
derivative, respectively; here,

St(y) ={

Figure 1 shows the partial sums of the first 11 and 101
terms of the series for the function g, (on the left) and

g, (on the right). It can be seen that for a function with
a discontinuity in its value, taking even one hundred
terms of the series into account gives no satisfactory
convergence; however, for a function with a derivative
discontinuity, a satisfactory convergence is achieved

1,
0,

y>0
y<0.

even for ten terms, while one hundred terms reproduce
the function almost perfectly.

Note that the divergence of series (21) for distribu-
tion functions with power-law tails follows from the
scheme of constructing our solution itself, which
requires the convergence of the set of integrals (18).
We cannot use terms of the series with k£ > oo —1 for
restoring the distribution functions with power-law

tails f(x,y) ~ 1/y”. Nevertheless, even in cases where
our series does not converge formally due to the fact
that high moments of the original function tend to
infinity, we can use a finite number of finite terms of
series (21) for a satisfactory approximate solution of
the original problem. From the physical point of view,
this is not surprising, since all the lower moments
for the approximate distribution function are guaran-
teed to coincide with exact values for the restored
function f. The procedure for constructing an approx-
imate solution using a finite number of series terms is
discussed in the next section.

6. RESTORING THE FUNCTION
FROM A FINITE NUMBER OF TERMS
OF THE SERIES

In order to clarify the idea developed below, let us
start with a simple special case. We have certain arbi-
trariness when choosing a system of orthogonal poly-

nomials. In particular, we can use polynomials L,(By),

where 3 > 0 does not depend on y, instead of L,(y). In
view of a rescaled orthogonality relationship, it is easy
to obtain a set of various equivalent expressions for
series (21) with an additional free parameter [3:

zz[ j B6,

n=0 k=0 (23)
x L, (By)exp (—By)-
PLASMA PHYSICS REPORTS Vol. 47 No. 6 2021
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This series inherits the main property of expan-
sion (21)—the partial sum of the first N terms gives an
approximate function f, that exactly reproduces the
first N moments with respect to the variable y, that is,

jy"fN (x,y)dy = fy"f (x,y)dy,
0 0

k=0,1..,N-1

in this case, the remainder term includes the zero first
N moments.

It can be seen that by selecting 3, we can provide
the convergence of the resulting series for any expo-
nentially decreasing function f, including those for
which the initial series (21) diverges. Moreover, it is
not difficult to see that all functions of the form (22)
will be exactly described by one term of series (23) if
B = a. In a real problem, the function fis unknown a
priori; moreover, the asymptotic behavior of this
function is most likely not exponential for y — co.
Nevertheless, the freedom to choose the parameter 3
also allows optimizing the convergence of infinite
series (23) for fand decreasing the error of the approx-
imate solution fy , which is related to the rejection of
the remainder term. Such a rejection in an actual
problem is primarily due to the natural limitations of
the experimental data, which cannot be infinitely dif-
ferentiated with the hope to extract some information
from them. This raises the problem of optimizing the
restoring of the distribution function in a situation
where only a finite number of series terms G, are avail-
able. We can propose the following approach to its
solution. The first N terms of the expansion are taken
into account, and by choosing 3, we ensure that the
(N + 1)th term of the expansion is equal to zero. This
implies solving the algebraic equation

E[Nk”j( D 6ot =

for B at each x value. The obtained approximate func-
tion will consists of N expansion terms and precisely
reproduce the N + 1 first moments of the distribution
function with respect to y. Bearing in mind the mean-
ing of the variables x and y, Eq. (24) can be interpreted
from the physical point of view as the equation for the
effective transverse temperature, which most accu-
rately describes the distribution of particles with a
specified longitudinal energy.

The described method can be improved if general -
ized Laguerre polynomials that are defined as

(24)

R “ (4 o) (=1)f
L(na) _Yy ed oY) = k’
) == dy"( ») k; Y e
where ("i“) denote the generalized binomial coeffi-

cients [30], are taken as the system of orthogonal poly-
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nomials. Let us take the set of polynomials L (By)
that satisfy the relationship of orthogonality

P . T(n+o+1
I LY (By) L (By) e Py = %
% B ' n!
as the basis of the expansion. The expansion of the
desired function then assumes the form

nk

Zf L(Oﬂ) By) _BJ’,
= ©3)
_ n! (o) [k
)= oo [B“G, (%)),

where * [B G (x )] is considered as the expression

obtained from the polynomial Z” (y) as a result of the

formal substitution y* — B*G, (x). The obtained
series converges in a wide range of the parameters o
and B for the function f(x,y) that decays rather
quickly at infinity. This allows us to optimize the
approximation of the distribution function by a finite
number of terms of the series by varying these param-
eters; these parameters can be varied independently
for each x value.

As before, the partial sum f, of the first N terms of
series (25) exactly reproduces the first N moments of
the desired function at any o and . Let us demand
that the (N + I)th and (N + 2)th terms of the series be
strictly equal to zero. This will lead to the algebraic
system

L(lgll [Bka (x)] =0
£, [6, ()] =0,

which determines the parameters o(x) and (x) inde-
pendently for each x value. The approximate function
fn that corresponds to this choice of parameters will
exactly reproduce already N + 2 moments of the dis-
tribution function.

(26)

The expansion in terms of generalized Laguerre
polynomials allows one to take the specifics of the par-
ticle distribution in an adiabatic magnetic trap into
account, namely, the distributions with an empty loss
cone. Recall that y corresponds to the kinetic energy of
the transverse motion (rotation) of a particle. There-
fore, distributions with a loss cone are well modeled by

functions of the form y“exp(—fy) that can be
described exactly by one term of series (25). It can be
expected that when restoring the distribution function
with a depleted ion distribution in the loss region from
actual data, expansion (25) will provide the preset accu-
racy with fewer terms of the series than expansion (23),
which relies on “less physical” basis functions.
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Let us consider the examples of how the recovery of
the distribution function works through the expansion
in terms of Laguerre polynomials with one varying
scale B and through generalized Laguerre polynomials
with two varying parameters o and 3. The verification
procedure is the same all the time: using the analyti-
cally defined function f(x,y), we calculate the diag-

nostic response G(&, w), calculate the moments G, (x),
and then apply solutions (23) or (25) with a finite
number of terms of the series. We always consider
three terms taking the forcedly zeroed ones into
account; i.e., the restored approximate function con-
tains at most two terms if one expansion parameter is
varied, and only one term if two expansion parameters
are varied. Even under such strict conditions, Egs.
(24) or (26) guarantee that the first three moments,
i.e., the number of particles, the total energy of cyclo-
tron rotation, and its variance, are restored exactly for
each group of particles having a given longitudinal
velocity.

Figure 2 shows the results of restoring the distribu-

tions of the form f(x,y) = f, (x) f, (). In this case,
the multiplier that is responsible for the dependence
on x is restored exactly by the finite sum of the series;
in this case, the parameters o and [ are the same for all
x. Figure 2a refers to the elementary case of an aniso-
tropic Maxwell distribution, for which the first term of
expansion (25) gives an exact answer for oo = 0 and
B = 2 (the same graphs on the left and right). If we fix
the “wrong” transverse temperature 3 =1 and opti-
mize the parameter o, the first two terms of the expan-
sion then provide a relative accuracy at a level of 5% in

the entire “thermal region” |x + )| < 3 (the graph at
the center, the relative accuracy is determined by the
maximum relative shift of the level lines). The case (b)
corresponds to a Maxwellian distribution with a loss
cone, for which the first term of expansion (25) gives
an exact answer for oo = 3 and § = 2 (the graph on the
right). The other two methods (on the left, fitting the
transverse temperature 3 at oo = 0 and at the center,
fitting o at the forced incorrect temperature B = 1)
allow satisfactory recovery of the distribution function
over only two expansion terms. The case (c) also cor-
responds to the Maxwellian distribution with a loss
cone, but it has a more complex form. Now we already
cannot accurately reconstruct the distribution func-
tion by a single term of the series. It can be seen that
the optimization simultaneously in two parameters, O

and B, which leads to a simple formula f(x,y) =

1.41y" P exp (—x —1.72y) (graph on the right), gives
a better approximation than the two-term approxima-
tions that are obtained as a result of optimizations in
each parameters separately (on the left and at the cen-
ter). Thus, using the above “training” examples, we
became convinced that expansion (25) with an addi-
tional free parameter can significantly improve the

GOSPODCHIKOV et al.

accuracy of the recovery compared to one-parameter
expansion (23).

Let us now consider an example that simulates a
physical problem. Figure 3 shows the level lines of the
distribution function that describes hot ions generated
as a result of both stripping a neutral beam, which is
injected into plasma at an angle of 45° to the magnetic
field, and the subsequent Coulomb relaxation, which
is the case that meets the experimental conditions on
the GDT installation. The initial distribution function
is specified either by an anisotropic Maxwell distribu-
tion that is shifted to the point corresponding to the
velocity of neutral atoms (the graph on the left),

fi(x.y)
o XA —2e) (=) @)
Bt 20¢e 25e80°

or a similar distribution that is truncated on the side of
high energies (the graph on the right)

fH(xy) = fi(xy)St(e, —x—y).

The second distribution simulates the features of
relaxation of the distribution function due to Coulomb
collisions with background plasma particles, in which
the diffusion in the velocity directions and energy loss
due to friction are the dominant effects. Unlike the
effects discussed above, these distributions are no lon-
ger factorized; therefore, when restoring them, we per-
formed optimization with respect to o and [ separately
for each x value. The results of the recovery are shown
in the graphs with dashed level lines. The restoring

accuracy of the function f; using only one term of
series (25) is approximately 1%. It can be seen that for

a function f, with a discontinuity, the recovery is
somewhat worse, but its accuracy is still quite high. As
an example, the most difficult parameter to recover by
this method is the position of the discontinuity that

corresponds to the maximum energy €, ; it is restored
with an accuracy of ~5% when determining the maxi-
mum energy at a level of the distribution function of
0.01. We also note that the approximation obtained
from a small number of terms of the optimized series
for a function with a discontinuity is positively
defined, in contrast to the result obtained by summing
a large number of terms of an unoptimized series
(Fig. 1). We recall that the method automatically pro-
vides correct values for the number of particles, trans-
verse energy, and its variance at each value of the lon-
gitudinal particle velocity.

Hence, by summarizing our experience in applying
this method to various distribution functions, we can
formulate the following empirical conclusion. If the
choice of o and P ensures that two consecutive terms
of series (25) are equal to zero, then the sum of all sub-
sequent unaccounted terms of the series will be small

(28)

PLASMA PHYSICS REPORTS  Vol. 47 No. 6 2021
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Fig. 2. Examples of the recovery based on the first terms of series (25) for the model distribution functions:

(@) f(x,y) =exp(—x—2y), (b) f(x,y) = y3 exp(—x —2y),and (c) f(x,y) = (O.Sy + y2 + 0.3y3)exp(—x — 2y) for three opti-

mization methods: in 3 for oo = 0 (on the left), in o for B = 1 (at the center), and in both parameters, o, and 3 (on the right). Solid
black curves correspond to the level lines of the initial function; dashed curves correspond to the level lines of the restored func-

tions. The expansion parameters resulting from the optimization are given above each curve.

in comparison to fy, or, in other words, the sum of the ~ tions with “pathological” features, e.g., for functions
first nonzero terms will repeat well the desired func- ~ With power tails, for which all the higher moments,
tion. This statement is also true for individual func- beginning with a certain one, diverge.
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Fig. 3. The recovery of the ion beam distribution function using the first term of series (25) for the optimization in both param-
eters, o and P. The left and right graphs correspond to smooth distribution (27) and distribution (28) with a discontinuity. The
parameters of the distributions are € = 30, de =1, 80 = 0.3, and €, = 40. Solid black lines correspond to the level lines of the
original function; dashed lines correspond to the level lines of the restored functions.

7. CONCLUSIONS

In this paper, we have studied the possibility of
reconstructing a full two-dimensional velocity distri-
bution function of energetic ions in an open magnetic
trap from measurements of collective Thomson scat-
tering spectra in the same scattering geometry, but in
different trap cross sections that correspond to differ-
ent magnetic field values. It is seen that under the
assumption of the adiabatic nature of the ion motion
in the trap, such a series of measurements is sufficient
to completely restore the distribution function.

The problem of reconstruction is reduced to the
solution of an integral equation, for which two meth-
ods of solution are proposed. Both presented analytical
methods, through the Mellin transform and through an
expansion in terms of orthogonal polynomials, allow
realization in practice. However, the method of expan-
sion in terms of orthogonal polynomials appears some-
what more preferable from the standpoint of the phys-
ical validity and ease of implementation. When using
the expansion in terms of orthogonal polynomials,
each term of the series is responsible for restoring the
corresponding moment of the distribution function.
Naturally, the search for a solution in the form of a
series also has its drawbacks, which include the need to
calculate derivatives of increasingly higher order of
experimental data for calculating terms of the series. In
this case, the problem arises of optimizing the proce-
dure for restoring the distribution function when only a
finite number of terms of an infinite series are available
from the experimental data in principle. The possibili-
ties of such optimization are considered in this paper
on the example of a case where only three terms of a
series are available, which requires calculating the first
and second derivatives of the experimental data. The
possibility of a very good recovery of model distribu-

tion functions due to the choice of the scale and order
of generalized Laguerre polynomials is shown.

APPENDIX

Here, we consider examples of the reconstruction
of the distribution function via the Mellin transform,
which allows a fully analytical calculation. These par-
ticular examples appeared during the verification of
formulas (14) and (15) proposed in the article before
we obtained the general formal proof presented here.
They can also be useful for tests during the practical
implementation of the proposed method.

I. Delta function. Let us consider the distribution
function that corresponds to a monovelocity ion beam,

(%) =8(x—x)8(y—»).
The function G(&, w) assumes the form
G=38(+wy—x).

Let us apply inverse (14) to the function G(§, w). This
results in the following chain of expressions:

=)

[[a@&w) PEw.xy)deaw
00
G, +ico Gy+i°° o0 oo

= )L J[pGr )

G, —ico G,—i 0 0

gs},—sv—lxsv—l (wy)—s}, F(l _ SV)
F(sy - SV)F(I - Sy)
G, +ico G +ico

s,—1 =Sy
w L aalz) ) e
T GV,,-wcy,,-mon’O Xo Yo

=38(x—x0)0(y—)-
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The integral over & corresponds to the already used
tabulated integral (17) and is taken under the condi-
tion of Re(s,—s,)>0 and Re(s,) <1; the latter
equality follows from the Mellin transform for the
delta function (the rigorous proof of the fact that the
obtained integral is a delta function can be found
in [31]).

II. Anisotropic Maxwellian distribution function.
Let us consider the distribution function

f(xy)=

The function G (§ w) that corresponds to it has the
form

oexp(—x — o).

exp (%)
1+ w/oc '

G(&w)=

Further, the tabulated integrals [28] are used:
J‘&S}'ﬂ”l exp(-€)dE=T(s, —s,),
0 (A.1)
J‘ w dw o

o0+ W sin (ms,,)

(these formulas are valid for Re (sy s,) >0 and
Re(s,) € (0,1)). As a result of applying inverse integral
operator (14) to the function G (€, w), we obtain

0 0o

[[o@w) PEw.xy)deaw

T e

G, —ico Gy—ico 0 0

sy=s,—1_s5,-1 —s, _
ST X () "TU=S) e o s,
F(Sy - SV)F(l - Sy)
G, +ico G +ieo

x* (o) T(1-s,)T(s,)ds,ds,

= aexp(—x —oy).

During calculations, the relationships T'(z)I'(—z) =

—n/(zsin(nz)) and zT'(z) =T (z+1) were used as
well; the latter equality follows from the known Mellin
transform for the exponent [28]

O+ioo

. I x’T'(s)ds = exp(—x),
2mi 2

1

which is valid for Re(s)>0; or Re(s,)>0,
Re(s,) <1. As is seen, the latter restrictions lie in
domain (13).
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II1. Isotropic step function. Let us consider a distri-
bution function with a discontinuity specified by the
expression

, x+y<a

f(xy)= {0’

The function G (§ w) that corresponds to it has the
form

x+y>a.

-
GEw) ={1rw °°°
0, &>a.

Inverse integral operator (14) is applied to the function
G (& w), and we obtain

0 oo

.”G(E-" w) P (& w,x,y)dEdw

00
(5+l°°0' +1°<’°°tl

1+w

G, —ico G, =i 0 0
E-'sy—sv—lxsv—l (wy)—sy 1_,(1 s
F(Sy - SV)F(I - Sy)
Gytico Gytico g | —s, I+s,~s
T Ty gD (5T (1 -
= —Lz J‘ X y a (sy) ( SV)dSyds
4r r(2+s,-s,)

G, —ic G —ico

) d&dwds ds,

Ve

Here, the integral over § corresponds to integral (17),
that is taken provided that Re(s, —s,) > 0, while the
integral over w corresponds to integral (A.1), which is
taken under the condition of Re(s,) € (0,1). Further,
the integral over s, is taken using the tabulated inte-
gral [28]:

Lj C(s)a"

2mi (s, +2-5,) ~

G, —ioo
_ =27 /r2-s), ze(0.1)
0, ze(l, o)
(this is valid for Re(s,) >0, Re(2—-s,) >0). As a
result, we have
jIG P(& w, x, y)dEdw
l (o9 +ico _yv—l 1
x
=— ds,, € (0, a),
2ichv-£w (a - yj 1-s, S ( a)

This corresponds to the known Mellin transform for
the step function [28]

LGTMXS: , 0<xx<l1
2Tci0—i°<’ N 07

x>1,
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which is valid for Re(s) > 0. This corresponds to
Re(s,) < 1and, thus, does not contradict any restric-

tions on s, mentioned above. After a simple transfor-
mation of the domain of definition, the result is:

xX+y<a

ﬁ"‘%(&,w,x,y)dgdw :{l,

o1+ w 0, x+y>a.
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