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Abstract—The statistical model of quantum mechanics is based on the mapping between operators on the
Hilbert space and functions on the phase space. This map can be implemented by an operator that satisfies
physically motivated Stratonovich–Weyl axioms. Arguments are given in favour of a certain extension of the
axioms, provided that there is a priori knowledge about the composite nature of the quantum system.

DOI: 10.1134/S1063779623060175

1. INTRODUCTION
Everyday experience tells us that a “composite” is

something admitting partition into an “elementary”
which is considered to be primary and, therefore, not
dividable any further. Moreover, it is assumed that,
when a “composite” object is divided into its “elemen-
tary” parts, all properties of the “composite” object
are determined by the characteristics of its constitu-
ents via certain rules of composition. Several funda-
mental notions of classical physics originated from
these intuitive assertions and were afterwards wrapped
into rigorous mathematical concepts of measure
space. In particular, in classical statistical mechanics a
vague idea of the “whole  part” is embodied in the
measure-theoretic framework of the theory of proba-
bility where the “composition” rule is encoded in the
principle of additivity of probability distributions, one of
Kolmogorov’s axioms of the probability space1.

(A.I) Non-negativity of the probability measure,

(A.II) Finite norm, 
(A.III) additivity for pairwise disjoint sets,

The last axiom has a profound impact on the
description of composite objects in classical theory.

Along with the assumption on the Boolean character
of events, (A.III) results in an intuitively expected rep-
resentation of the classical phase space of a composite
system in the form of the Cartesian product of the
phase spaces of subsystems  and ,

(1)
However, even at the beginning of the quantum

theory era, scientists realized that the aforementioned
concepts would fail to describe a quantum world (cf.
[1–3]). In particular, in the phase-space formulation
of the quantum theory one cannot maintain the non-
negativity axiom A.I and the composition rule (1) as
universal laws without encountering a contradiction
[4–6]. To avoid such a contradiction, a generalization
of (A.I)–(A.III) was suggested through the replace-
ment of the σ-algebra by the non-Boolean lattice
which meant a fundamental transformation of con-
ventional Boolean logic into non-Boolean quantum
logic (see e.g., [1, 7]). As a result of the change of the
classical paradigm, the notion of probability distribu-
tion functions has been converted into the concept of
quasiprobability distributions.

In the present note, remaining in the framework of
the phase-space formulation of quantum mechanics,
the analog of (1) for composite finite-dimensional
quantum systems will be discussed. The Stratonovich-
Weyl (SW) axioms [8] will be complemented by a new
axiom of additivity for systems a priori known to be
compound ones.

2. COMPOSITE QUANTUM SYSTEMS
In quantum theory the analog of the Cartesian

product (1) of the classical phase spaces of systems 
and  is a tensor product of the corresponding Hilbert

1 Under the probability space I assume the measure space
, such that the sample space (the space of all states of

the system)  is a -dimensional symplectic manifold, the
space of events  is represented by elements of -algebra,
and the probability measure  of event  is
given by the Lebesgue integral,  with the
probability distribution function .
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spaces  The partial trace operation,
 ,

allows us to extract information on each subsystem
from the density matrix  of the whole system in the
form of the density matrices of subsystems  and 

(2)

Aiming to construct the quasiprobability distribu-
tions of the subsystems for a given composite system,
we will propose the idea to use the partial trace opera-
tion (2) not only for the states, but for their duals, the
Stratonovich–Weyl kernels.

3. THE STRATONOVICH–WEYL PRINCIPLES

The Wigner quasiprobability distribution 
of an -dimensional quantum system in a mixed state
is defined by the pairing of density matrix  and the
Stratonovich–Weyl kernel  which is defined on
the symplectic space :

(3)

The SW kernel  determines a proper qua-
siprobability distribution provided the following axi-
oms are satisfied (see e.g., [8, 9] and references
therein):

(1) Reconstruction of state  by integrating the
Wigner function over a phase space:

(4)

(2) Hermicity of the SW kernel, 
(3) Finite norm of a state given by the integral of the

Wigner distribution:

(5)

(4) Covariance: The unitary transformation
 induces the symplectic

change of coordinates  
.

According to [9], the axioms (1)–(4) are fulfilled if
(1) The SW kernel  in (3) is an element of the

dual space:

(6)

The space of solutions to (6), i.e., the moduli space, is

set by an isotropy group, . For a
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regular -stratum  is a polyhedron on

(2) The phase space  is identified with the orbit

Now, leaving (1)–(4) in force, the 5th axiom on
composite quantum systems is proposed:

(5) Composite systems axiom: Let  and  be
a density matrix and a SW kernel of composite system

, respectively, then the Wigner functions of states 
and  are constructed by pairing (3) with partially
reduced matrices , i.e.,

 and 
The extended system of axioms (1)–(5) allows us to

render the following assertions:

• The dual state space  of a binary composite
system with - and -dimensional subsystems is

-dimensional subspace of , defined as

(7)

• The phase space  of a composite system is
determined by the Local Unitary (LU) group,

 corresponding
to the factorization , and by the isotropy
group of the SW kernel: 

• The moduli space is the factor space

Below, the statements (i)–(iii) are illustrated for a
simplest binary system of a pair of qubits.

4. EXEMPLIFYING A 2-QUBIT SYSTEM

Let us consider the space of full rank  density
matrices . Bearing in mind that the system is
composed from 2-qubits, an adapted representation of
a state is given in terms of the Bloch vectors of qubits

 and  along with a  correlation matrix :

(8)

In (8),  and 
denote the elements of the Fano basis 
of the  algebra constructed out of Pauli matrices

 Similarly, vectors  and  and a
real  matrix  define the SW kernel :

(9)
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If a 4-level system is elementary, the master
Eqs. (6) impose the following condition:

(10)

However, if it is known that the system consists of
two qubits, according to (7), instead of (10) the indi-
vidual norms of vectors ,  and the matrix  are
fixed:

(11)

Therefore, the 2-qubit’s dual space is 
such that  The phase space

, corresponding to an elementary 4-level system, is
one of the -orbits  on

. When a 4-level system is considered to be a joint of
2 qubits, then according to assertion (ii) the LU transfor-
mations and isotropy group  of the SW kernel
(9) define the phase space of 2-qubit , as well as its
moduli space . In accordance with the 2-qubit
Hilbert space factorization, the LU transformations
form the subgroup  and
the orbits of  on  define  Hence, the issue of
describing the 2 qubit phase space is reduced to the
mathematical problem of classifying admissible types
of -orbits on . Being restricted by the required
volume of this note I will illustrate the construction of
a 2-qubit SW kernel for only one class of 6-dimen-
sional phase space  and the moduli space  In
order to explicitly describe these spaces, it is conve-
nient to decompose  into three factors:

(12)

In (12)  and  are the Abelian subalgebras in the
direct sum decomposition of the algebra:

(13)

such that the following commutator relations hold2:

(14)

Using (12) for unitary factor  in SVD of

 one can be con-
vinced that the master Eqs. (11) describe a bundle of a

2 Note that if  = 

  then
 while the torus alge-

bra is  and the algebra of subgroup  reads
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unit 2-sphere and two ellipsoids EA and EB in the space
 with the Cartesian coordinates :

(15)

The  matrices  and  in (15) are constructed
out of the adjoint matrix :

(16)

The moduli space  of a 2-qubit system is deter-
mined from analyzing the following pairwise charac-
teristic polynomials of ellipsoids  and a unit
2-sphere:

(17)

According to [10], each characteristic polynomial
in (17) always has at least one negative root. Moreover,
the ellipsoids and the 2-sphere overlap iff characteris-
tic polynomials have no positive roots. More on the
geometric properties of  will be given elsewhere.

5. CONCLUSIONS
Discussing the phase-space approach to elemen-

tary vs composite quantum systems, it is worth
emphasizing the common principle used: the underly-
ing symmetry of a system dictates the construction of
the basic quantities in both cases. In the first case, the
global  symmetry sets the phase space

 as well as the moduli
space  via the master equations (6) on the orbit

space  In the second case, dealing with

another pair of spaces  the local sub-sym-
metry,  comes
into play once more. The latter defines the phase space

 and the moduli space  via the extended

master Eqs. (7) on the orbit space .
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format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons license, and indicate if changes were made. The images
or other third party material in this article are included in the
article’s Creative Commons license, unless indicated other-
wise in a credit line to the material. If material is not included
in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.
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