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Abstract—It is shown that the Schrödinger equation for the sum of the potential of a square well and the
Coulomb potential of a uniformly charged sphere admits an analytical solution for arbitrary values of the
orbital angular momentum. An explicit form of this solution has been found. Using the obtained solution,
the influence of the Coulomb interaction for both point and distributed nuclear charges on the values of
asymptotic normalization coefficients for various nuclear systems is investigated. It is shown that taking
into account the non-point distribution of the nuclear charge has little effect on the calculated values of
the asymptotic normalization coefficients, provided that the binding energy of the system is assumed to be
fixed.
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1. INTRODUCTION

Asymptotic normalization coefficients (ANC) de-
termine the asymptotics of nuclear wave functions
in binary channels at distances between fragments
exceeding the radius of nuclear interaction. In terms
of ANCs, the cross sections of peripheral nuclear
processes are parameterized, such as reactions with
charged particles at low energies, when, due to the
Coulomb barrier, the reaction occurs at large dis-
tances between fragments. The most important class
of such processes is astrophysical nuclear reactions
occurring in the cores of stars, including the Sun. The
important role of ANCs in nuclear astrophysics was
first noted in the works [1, 2], in which it was shown
that ANCs determine the overall normalization cross
sections of peripheral reactions of radiation capture
(see also works [3, 4]).

When extracting the ANC values from the data on
phase shifts of elastic scattering, it is very important
to take into account the effects of the Coulomb in-
teraction between colliding particles at energies near
zero (see, for example, [5, 6]). These effects are as-
sociated with the long-range nature of the Coulomb
interaction, which for point charges has the form
Vcoul = Z1Z2e

2/r for all values of r. Here Zie is the
charge of particle i and r is the distance between the
centers of mass of the colliding particles. However,
when analyzing data on the cross sections of nuclear
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reactions within the framework of the distorted wave
Born approximation, the non-point distribution of
the electric charge in the nucleus is often taken into
account; in this case, as a rule, the potential of a
uniformly charged sphere is taken as the Coulomb
interaction. Since the distorted wave Born approxi-
mation is often used to obtain information about the
ANCs [3], the question arises about the influence of
the non-point nuclear charge on the ANC values. For
brevity, below we will call the Coulomb potential for
a point charge and for a uniformly charged sphere
a point and non-point Coulomb interaction, respec-
tively.

In the works [5–7], along with the determination
of the ANC values from the data on phase-shift anal-
yses, the study of qualitative Coulomb effects in low-
energy elastic scattering was carried out. In this
case, the potential of a rectangular well was chosen
as the nuclear interaction, which, unlike other types of
potentials, allows one, in superposition with the point
Coulomb interaction, to obtain an analytical solution
of the Schrödinger equation for arbitrary values of
the orbital angular momentum l. In this paper, it is
shown that an analytical solution of the Schrödinger
equation for arbitrary values of l can also be obtained
for a combination of the potential of a rectangular
well and the Coulomb potential of a uniformly charged
sphere. Within the framework of this exactly solvable
model, we investigate the influence of the Coulomb
interaction on the values of the ANC for both point
and distributed electric charge of the nucleus. Note
that the influence of the point Coulomb interaction
on the ANC values was discussed in the framework
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of the two-particle potential model with separable s-
wave interaction in [8] using the example of 3H and
3He nuclei.

It should be emphasized that when considering
low-energy processes that are of interest to us, the
results are insensitive to the detailed structure of the
nuclear potential at distances r � 1/k, where k is
the relative momentum of the interacting particles [9].
Therefore, the conclusions obtained in this work, es-
pecially qualitative ones, should not depend on the
specific form of the strong interaction, be it a rectan-
gular well, the Woods–Saxon potential, or something
else.

The paper is organized as follows. Section 2
presents the general formalism of the problem. Sec-
tion 3 is devoted to the application of this formal-
ism to analyze the influence of various forms of the
Coulomb interaction on the ANC values for specific
nuclear systems. The results are briefly discussed in
Section 4.

Throughout the paper we use the system of units
in which � = c = 1.

2. GENERAL FORMALISM

2.1. The Form of Interaction and the Structure
of the Solution of the Schrödinger Equation

We investigate the ANC for splitting the bound
state of the nucleus a into two fragments b and c (a →
b+ c). Specifically, a proton or an α-particle will be
considered as a light fragment c. The Coulomb inter-
action between b and c is described by the potential
of a uniformly charged sphere of radius Rc, and also,
for comparison, by a point Coulomb potential, which
formally corresponds to Rc = 0. An attractive rect-
angular well with depth V0 and radius R is chosen as
the nuclear interaction. The selection of the potential
parameters is described in Section 3. In accordance
with the conclusions of the works [10, 11], we will
assume without loss of generality that Rc ≤ R.

The problem of finding the ANC is reduced to
finding the coordinate asymptotics of the solution to
the radial Schrödinger equation

d2χl

dr2
+

[
2μE − 2μV (r)− l(l + 1)

r2

]
χl = 0 (1)

for a potential of the form

V (r) = −V0 + α(3− r2/R2
c)/(2Rc),

0 ≤ r < Rc, (2)

V (r) = −V0 + α/r, Rc ≤ r < R, (3)

V (r) = α/r, r ≥ R, (4)

where α = ZbZce
2. We consider the bound state a of

particles b and c with energy E = −ε = −κ
2/2μ, κ

is the wave number of the bound state and μ is the
reduced mass of b and c.

For r ≤ Rc χl(r) = a1ϕ1(r); the explicit form
of ϕ1(r) is discussed below in subsection 2.2. In
the region Rc ≤ r < R χl(r) = a2ϕ2(r) + a3ϕ3(r),
where ϕ2(r) and ϕ3(r) are regular and irregular
Coulomb solutions corresponding to the energy Ẽ =
V0 − ε. Finally, for r ≥ R χl(r) = a4W−η,l+1/2(2κr),
Wβ,γ(z) is the Whittaker function, η = αμ/κ
is the Coulomb parameter. The asymptotics of
W−η,l+1/2(2κr) for r → ∞ has the form:

W−η,l+1/2(2κr)|r→∞ = e−κr/(2κr)η . (5)

The constants ai (i = 1−4) and the binding en-
ergy ε are found from the conditions for matching
(continuity) values and first derivatives of the function
χl(r) at the points r = Rc and r = R and the normal-
ization condition:

∞∫
0

χ2
l (r)dr = 1. (6)

We emphasize that, by definition, the constant a4
coincides with the required ANC.

In the particular case Rc = R, the second region
degenerates into a point, and the matching is carried
out at one point r = R.

2.2. Solution of the Schrödinger Equation
for the Superposition of the Potentials
of a Rectangular Well and a Uniformly

Charged Sphere

ϕ1(r) is a solution of the Schrödinger equation
with the potential (2), which can be written as

d2ϕ1

dr2
+

[
2μ

(
E + V0 −

3α

2Rc

)

+
μα

R3
c

r2 − l(l + 1)

r2

]
ϕ1 = 0. (7)

By the form of the radial dependence of the interac-
tion, this equation is similar to the equation for the
potential of a three-dimensional harmonic oscillator,
which has the form

d2χl

dr2
+

[
2μE − μ2ω2r2 − l(l + 1)

r2

]
χ1 = 0. (8)

However, the fundamental difference between equa-
tions (7) and (8) consists in the opposite signs of the
terms proportional to r2. We were unable to find in
the literature an explicit form for the solution of the
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equation (7). One can, however, proceed as follows.
The solution (8), which behaves like rl+1 for r → 0, is
known [12]:

χl(r) = C1 1F1

(
1

2
(l +

3

2
− ν), l +

3

2
;λr2

)

× e−
λ
2
r2rl+1, λ = μω, ν =

E

ω
, (9)

where 1F1(a, b; z) is a degenerate hypergeometric
function. The equation (7) is obtained from (8) by
a formal replacement:

E → E + V0 −
3α

2Rc
, ω2 → − α

μR3
c

,

ω → i

√
α

μRc

1

Rc
. (10)

Therefore, in view of the analytical dependence of the
solution (9) on its parameters, we assume that the
solution to the equation (7) can be obtained from the
expression (9) by replacing

ν → ν̃ = −i

√
μRc

α
Rc

(
E + V0 −

3α

2Rc

)
,

λ → λ̃ = i

√
μα

Rc

1

Rc
. (11)

The solution ξ(r) thus obtained is regular at zero but
complex, and we need a real solution for a bound
state. All coefficients in (7) are real. Therefore, if for
Im r = 0 the function ξ(r) is a solution, then ξ∗(r)
is also the solution and Re ξ(r) and Im ξ(r) are also
solutions. Therefore, one can take

ϕ1(r) = Re
{

1F1

(
1

2
(l +

3

2
− ν̃), l +

3

2
; λ̃r2

)

× e−
λ̃
2
r2rl+1

}
(12)

as the function ϕ1(r) we need.

2.3. ANC Calculations for Specific Nuclear Systems

In this section, within the framework of the above
scheme, comparative ANC calculations for specific
nuclear systems are carried out. Nuclear interac-
tion is described by the potential of a rectangular
well. Both the potential of a point charge and the
potential of a uniformly charged sphere are used as
the Coulomb interaction. Calculations are also per-
formed neglecting the Coulomb interaction. Systems
with both small and large values of the binding energy
ε and the Coulomb parameter η are considered. Since
the main goal of the work is to study qualitative
patterns, and not to determine the ANC values with
high accuracy, to simplify the calculations, the values

of the radii of the charged sphere and rectangular well
are assumed to be the same: Rc = R.

In addition to the ANC defined above, which has
the dimension fm−1/2 and which we will denote by the
letter C, in the literature, first of all, in the microscopic
calculations of ANCs, the dimensionless ANC C̃ is
also used which is related with ANC C as follows:
C =

√
2κC̃. We also note that for large charges

Z and/or small values of the binding energy ε and,
accordingly, large values of the Coulomb parameter
η, the ANC C values can be very large, which is
explained by the presence of the barrier Coulomb
factor Γ(l+ 1+ η)/l!. In this regard, in the work [13],
for the convenience of calculations, the renormalized
ANC Cr was introduced, which does not contain this
factor: Cr = l!/Γ(l+ 1+ η)C. Using Cr instead of C
also makes it easier to compare ANC values for mirror
nuclei [13]. Note that the value of Cr is directly related
to the residue of the renormalized Coulomb-nuclear
partial-wave elastic scattering amplitude [14]. For
all systems considered below, we calculated and pre-
sented in the form of tables the values of ANCs C, C̃,
Cr, as well as C̃r = Cr/

√
2κ.

ANC calculations were carried out for five different
versions.

1. (Version 1). The values of the parameters V0 and
R were chosen so as to reproduce the experimental
value of the binding energy ε and the value of the ANC
C known from the literature for the given channel
a → b+ c when using the point Coulomb potential.

2. (Version 2). For the same values of V0 and R as
in version 1, the Coulomb interaction was taken in the
form of the potential of a uniformly charged sphere.
The calculated value of ε was naturally changed in
this case.

3. (Version 3). With the same value of R as
in version 1 and using the potential of a uniformly
charged sphere, the value of V0 was chosen so as to
reproduce the experimental value of ε. The purpose
of this action is to exclude the influence of changes in
the binding energy on the ANC values.

4. (Version 4). At the same values of V0 and R as
in version 1, the Coulomb interaction was turned off.
The calculated value of ε has been changed.

5. (Version 5). For the same value of R as in
version 1 and the Coulomb interaction being switched
off, the value of V0 was chosen so as to reproduce the
experimental value of ε.

In all the calculations performed, it was assumed
that the daughter nucleus b is in the ground state.
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Table 1. ANC for 17F(ground) → 16O + p

Version V0, MeV η ε, MeV C, fm−1/2 C̃ Cr, fm−1/2 C̃r

1 30.46 1.583 0.6005 1.042 1.8142 0.1596 0.2779

2 30.46 1.271 0.9310 1.0808 1.6860 0.2537 0.3958

3 30.07 1.583 0.6005 1.0337 1.7995 0.1583 0.2756

4 30.46 0 3.9351 0.9010 0.9803 0.9010 0.9803

5 25.76 0 0.6005 0.0955 0.1663 0.0955 0.1663

Table 2. ANC for 17F∗(0.495 MeV) → 16O + p

Version V0, MeV η ε, MeV C, fm−1/2 C̃ Cr, fm−1/2 C̃r

1 8.2691 3.782 0.1052 77.33 208.08 4.452 11.980

2 8.2691 1.300 0.8898 6.23 9.82 5.337 8.420

3 7.1838 3.782 0.1052 73.41 197.55 4.227 11.373

4 8.2691 0 3.6052 2.92 3.2445 2.920 3.2445

5 2.8663 0 0.1052 0.4438 1.1943 0.4438 1.1943

2.4. ANC for 17F → 16O + p

The 17F nucleus has two bound states: the ground
state 17F(5/2+; ground) (l = 2) and the excited state
17F∗(1/2+; 0.495 MeV) (l = 0). For the ground
state, ε = 0.6005 MeV. The value C = 1.042 fm−1/2

for this state was taken from the work [15] and was
used within the version 1 to fit the values of V0 and
R. These values of ε and C lead to the values V0 =
30.46 MeV and R = 4.238 fm.

The calculation results are presented in Table 1.

For the excited state 17F∗(0.495 MeV) ε =
0.1052 MeV. As ANC C for calculations in version 1,
we take C = 77.33 fm−1/2, which coincides with one
of the values obtained in [16] from the analysis of
the reaction 16O(3He, d)17F in the framework of the
distorted wave Born approximation. These values
of ε and C for version 1 correspond to the values
V0 = 8.2691 MeV and R = 4.984 fm. The calculation
results are presented in Table 2.

Note that, within the framework of the shell model,
the discussed excited state 17F can be written as
2s1/2, that is, the potential of the shell model con-
tains the 1s-state of lower energy. In such cases,
when describing real nuclear states, potentials with
forbidden states are often used. It was shown in [17]
that, within the framework of the potential model,
the ANC values calculated at a fixed binding energy
can significantly depend on the number of forbidden
states taken into account. In this regard, to study the
influence of forbidden states on the Coulomb effects
in determining the ANCs, we performed calculations
that differ from the calculations presented in Table 2

by the fact that in determining the potential param-
eters V0 and R in version 1, it was assumed that in
the potential used, in addition to the s-state with the
experimental binding energy, there is one more lower-
located (forbidden) s-state. This assumption leads to
the adjusted in version 1 values V0 = 32.06 MeV and
R = 4.658 fm. The binding energy of the forbidden
state is 20.17 MeV.

The results of ANC calculations for the excited
state 17F in the presence of a forbidden state are given
in Table 3. Comparison of Tables 2 and 3 shows that
their results are qualitatively the same.

2.5. ANC for 16O → 12C + α

For the transition 16O → 12C + α from the 16O
ground state , there is no ANC value in the literature.
Therefore, as the initial nucleus, we considered two
excited states of 16O: 0+ (6.049 MeV) (l = 0) and 1−

(7.117 MeV) (l = 1). The experimental values of the
binding energy in the 12C +α channel for these states
are 1.113 and 0.045 MeV, respectively.

In the case of an excited 0+-state, to determine
V0 and R in the framework of the first version of
calculations, in addition to the binding energy ε =

1.113 MeV, the value C = 1560 fm−1/2 [18] was used.
The obtained V0 = 18.07 MeV and R = 4.903 fm. For
these values of the parameters, in addition to the state
under consideration, the system also has a deeper
0+-state associated with the ground state 16O. The
calculation results are presented in Table 4.

For the 1−-state, C = 2.10× 1014 fm−1/2 [18] was
taken as the initial value. This ANC value combined
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Table 3. ANC for 17F∗(0.495 MeV) → 16O + p if a forbidden state is available

Version V0, MeV η ε, MeV C, fm−1/2 C̃ Cr, fm−1/2 C̃r

1 32.06 3.782 0.1052 77.33 208.08 4.452 11.980

2 32.06 0.7956 2.376 7.6700 9.466 8.245 10.177

3 28.62 3.782 0.1052 77.357 208.16 4.454 11.984

4 32.06 0 5.294 4.890 4.930 4.890 4.940

5 23.33 0 0.1052 0.4449 1.197 0.4449 1.197

Table 4. ANC for 16O∗(1.113 MeV) → 12C + α

Version V0, MeV η ε, MeV C, fm−1/2 C̃ Cr, fm−1/2 C̃r

1 18.07 3.103 1.113 1560 1745 228 255

2 18.07 1.450 4.767 817 635 615 478

3 13.97 3.103 1.113 1472.17 1646 215.3 240.75

4 18.07 0 9.272 117.6 77.44 117.6 77.44

5 8.591 0 1.113 3.442 3.850 3.442 3.850

Table 5. ANC for 16O∗(0.045 MeV) → 12C + α

Version V0, MeV η ε, MeV C, fm−1/2 C̃ Cr, fm−1/2 C̃r

1 12.61 15.43 0.045 2.10× 1014 5.24× 1014 2.973 7.415

2 12.61 3.359 0.950 639.2 743.7 15.31 17.81

3 11.54 15.43 0.045 1.95× 1014 4.87× 1014 2.763 6.892

4 12.61 0 6.261 14.28 10.37 14.28 10.37

5 4.652 0 0.045 0.1518 0.3788 0.1518 0.3788

with ε = 0.045 MeV leads to V0 = 12.61 MeV, R =
3.892 fm. The calculation results are presented in
Table 5.

2.6. ANC for 16O → 15N + p

In the examples considered above, weakly coupled
systems (ε ≤ 1.2 MeV) were studied. For compari-
son, we now carry out a similar study for the chan-
nel 16O(ground)→ 15N + p with high binding energy
(ε = 12.13 MeV, l = 1). To determine the parameters
V0 and R, the ANC value C = 13.86 fm−1/2 [19] was
used, which leads to the values V0 = 33.47 MeV and
R = 4.119 fm. The calculated ANC values are given
in Table 6.

2.7. ANC for 209Bi → 208Pb + p

As the last example, consider the ANC for a chan-
nel with a large Z value: 209Bi(ground)→ 208Pb + p.
For this process, ε = 3.799 MeV, l = 5, but the ANC
value is unknown. Therefore, we act differently than

in previous cases. Namely, we choose as R the
value 7.418 fm obtained by the formula R = r0A

1/3

for r0 = 1.25 fm. After that, the value of V0 at a
given value of R is fitted to the binding energy, which
leads to V0 = 51.29 MeV. For these values of V0 and
R, the calculated ANC value C is equal to 0.1158 ×
108 fm−1/2. Of course, the authors do not pretend
that this value of C is in good agreement with the
real ANC for the channel under consideration; it is
used only for a qualitative assessment of the Coulomb
effects.

The calculation results are presented in Table 7.

3. ANALYSIS OF THE CALCULATION
RESULTS AND CONCLUSIONS

In this paper, it is shown that for a combination
of the potential of a rectangular well and the Coulomb
potential of a uniformly charged sphere, which is often
used in calculations within the distorted wave Born
approximation, the solution of the Schrödinger equa-
tion can be obtained analytically for arbitrary values of
the orbital angular momentum l. An explicit form of
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Table 6. ANC for 16O(ground) → 15N + p

Version V0, MeV η ε, MeV C, fm−1/2 C̃ Cr, fm−1/2 C̃r

1 33.47 0.3076 12.13 13.86 11.39 11.83 9.721

2 33.47 0.2997 12.77 14.56 11.81 12.48 10.13

3 32.74 0.3076 12.13 13.58 11.16 11.58 9.522

4 33.47 0 15.71 11.21 8.635 11.21 8.635

5 29.38 0 12.13 7.408 6.089 7.408 6.089

Table 7. ANC for 209Bi → 208Pb + p

Version V0, MeV η ε, MeV C, fm−1/2 C̃ Cr , fm−1/2 C̃r

1 51.29 6.634 3.799 1.158× 107 1.253× 107 7.282 7.881

2 51.29 5.739 5.075 0.2804× 107 0.2823× 107 15.90 16.00

3 49.92 6.634 3.799 1.102× 107 1.192× 107 6.928 7.498

4 51.29 0 23.49 166.3 114.11 166.3 114.1

5 29.86 0 3.799 0.2537 0.2746 0.2537 0.2746

this solution has been found. Within the framework of
this exactly solvable model, we studied the influence
of the Coulomb interaction on the values of the ANC
for both the point and the distributed electric charge
of the nucleus. Specific nuclear systems with different
values of the binding energy, Coulomb parameter, and
orbital angular momentum were considered.

In what follows, we will mark the value corre-
sponding to the ith version of the calculation with the
index i.

Let us begin the analysis of the calculation results
with the binding energies. From the data given in
the tables, it follows that for all considered examples
in the case when the binding energy is not fixed, we
have ε1 < ε2 < ε4 (and, accordingly, η1 > η2 > η4).
This result is trivial, since taking into account the
repulsive Coulomb interaction effectively weakens the
attractive nuclear potential, and the transition from
a point charge to a distributed one while maintain-
ing the total charge is equivalent to weakening the
Coulomb interaction, since the Coulomb potential
inside a charged sphere is weaker than the potential
of a point charge.

The situation with the ANCs is more complicated.
Their values are largely determined by the asymp-
totics of the radial wave function, which, in accor-
dance with (5), has the form

χl(r)|r→∞ = Ce−κr/(2κr)η . (13)

In the absence of the Coulomb interaction (η = 0),
with increasing the binding energy and, consequently,

increasing κ, the rate of decrease in the asymp-
totics (13) increases with increasing r, which, due
to the conservation of the general normalization of
the wave function should, generally speaking, lead to
increasing the ANC C. This conclusion is certainly
valid in the frequently used effective range approxi-
mation, in which C =

√
2κ/(1 − κre), where re is

the effective range (see, for example [20]). The ANC
C increases with increasing κ also for the system
described by the well-known Hulthén potential, for
which the Schrödinger equation admits an analytical
solution for l = 0 [21].

When the Coulomb interaction is turned on, the
dependence of the ANCs on the binding energy be-
comes more complicated, since with a change in ε
the factors e−κr and (2κr)−η on the right-hand side
of (13) can change in opposite directions. So, for
example, for the sum of the zero-radius potential and
the point Coulomb potential, using the formulas of [8],
one can obtain an explicit analytic expression for the
ANC C in the form C =

√
2κC̃(η), where C̃(η) is

a rapidly growing function of η, C̃(0) = 1. If the
values of charges and masses are fixed, then with
increasing ε the values of η and C̃(η) decrease, but the
ANC C may increase due to the multiplier

√
2κ. In

the examples we have considered, a similar situation
is observed for the systems with small values of η
presented in Tables 1 and 6, for which the transition
from point to distributed charge slightly increases C:
C2 > C1. For all other cases C2 < C1, and for loosely
coupled systems with a large value of η, C1 and C2
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may differ by an order of magnitude (see Tables 2 and
3) or even by many orders of magnitude (Table 5).
For these systems, there is an even more general
relation C1 > C2 > C4 > C5 and the similar relation
for C̃ (see Tables 2–5, and 7). Note that for sys-
tems corresponding to Tables 1 and 6, even complete
switching off the Coulomb interaction (version 4)
does not change C significantly, which is associ-
ated with partial mutual compensation of the effects
caused by decreasing η and increasing ε. In this
case, the dimensionless ANC C̃, which differs from
C by the factor

√
2κ, changes more noticeably. From

Tables 1 and 6, it is also seen that this compensation
does not take place if, when the Coulomb interaction
is switched off, the binding energy is preserved by
changing the nuclear potential (version 5).

The most interesting and not obvious in advance
result is the fact that for version 3, even in the case
of a system with the maximum value of η (Table 5)
C3 differs from C1 by only 7%; for other systems,
this difference does not exceed 5%. Note that the
same relative differences between versions 3 and 1
also take place for all other types of ANCs considered:
C̃, Cr, and C̃r. This implies an important conclusion
that taking into account the non-point character of
the nuclear charge distribution has little effect on the
calculated values of ANCs, provided that the binding
energy is considered fixed.

We emphasize that the use of renormalized ANCs
Cr and C̃r is justified in the case of large values of η
(see Tables 5 and 7).
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