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Recent years have seen growing interest in pro-
cesses taking place in plasmas containing micrometer-
sized particles. They are generally known as complex
or dusty plasmas (e.g., see [1, 2]). On the one hand,
complex plasmas are found in a variety of natural sys-
tems, such as interstellar clouds, planetary rings [3],
comet atmospheres [4], ionospheres and magneto-
spheres of planets, where the presence of dust grains
frequently determines the system’s state. For example,
noctilucent clouds, which are located in the dusty cold
upper atmosphere of the Earth [5–7], are dust structures
determining ionization in the mesosphere. The pres-
ence of comet dust in the Jovian atmosphere probably
[8] caused the brightening of the Jovian radiation belts
during and after the collision of Comet Shoemaker–
Levy 9 in July of 1994 [9].

On the other hand, observation of the behavior of
each individual particle provides a basis for character-
izing an ensemble of dust grains on the most detailed
(kinetic) level. This makes dusty plasmas an attractive
tool for investigating various basic problems in physics,
such as phase transitions [10, 11], hydrodynamic insta-
bilities [12], or crystallization waves [13, 14].

One important problem is the behavior of charged
micrometer- and nanometer-sized particles in narrow
channels, where the mean interparticle distance is com-
parable to the channel width and the walls have an
extremely strong effect on the particles. The behavior
of a confined ensemble of interacting particles where
one of the system’s length scales is comparable to the
mean interparticle distance has recently become the
subject of extensive studies [15, 16] because of its

importance for numerous applications in physics of
nano- and microliquids, colloidal microparticles, capil-
lary phenomena in nanopores [17], confinement-
induced phase transitions, granular systems [18], etc.
Complex plasmas are a convenient tool for examining
such phenomena [19, 20].

In recent years, considerable progress has been
made in understanding the behavior of colloidal parti-
cles in narrow channels (e.g., see [21, 22]). Many
experimental results have been explained in the frame-
work of the hard-sphere model. However, complex
plasmas are different from colloidal plasmas in that the
mean interparticle distance 

 

∆ 

 

is much greater than the
particle size

 

 a

 

. Since 

 

∆

 

 

 

≈

 

 100 

 

µ

 

m and 

 

a

 

 

 

≈

 

 1 

 

µ

 

m in typ-
ical experiments on complex plasmas, the behavior of
confined complex plasmas has unique characteristics.

A laboratory dusty plasma is usually created by add-
ing micrometer-sized particles to a weakly ionized
plasma of a low-pressure inert gas discharge. Surface
electron–ion recombination on dust grains leads to
grain charging. The charge of a grain depends on its
size and plasma parameters. For example, in a typical
RF argon discharge, a micrometer-sized dust grain is
charged to 

 

Z

 

d

 

/

 

e

 

 ~ 10

 

3

 

, where 

 

e 

 

is the electron charge.
High grain charge frequently leads to strong nonideal-
ity of the dust component: it can behave as a gas, a liq-
uid, or a crystal. The crystalline state of the dust com-
ponent of a complex plasma, known as plasma crystal,
was discovered in 1994 [23, 24] after it had been theo-
retically predicted in 1986 [25].

The positive column of a gas discharge is a potential
well where negatively charged dust grains are confined.

 

Characteristics of Crystallization of Complex Plasmas
in Narrow Channels

 

B. A. Klumov and G. E. Morfill

 

Max-Planck-Institut für Extraterrestrische Physik, D-85740 Garching, Germany
e-mail: klumov@mpe.pmg.de

 

Received April 25, 2008

 

Abstract

 

—Molecular dynamics simulations are performed to analyze the dependence of the behavior of com-
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In the central region, the confining potential 

 

Φ

 

c

 

 can be
approximated by a parabola: 
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, where 

 

x

 

c

 

is the coordinate of the discharge center. Near the elec-
trodes, the electric field gradient is much steeper and a
nearly hard-wall confinement is observed. In a complex
plasma experiment, the dust component can be con-
fined by an external or self-consistent field. In the latter
case, the field depends on the distribution of charged
dust grains over the discharge volume.

In [19], we examined the effect of confinement on
equilibrium configurations of the dust component of
complex plasmas in two-dimensional narrow channels,
using a screened Coulomb potential to describe the pair
interactions between dust grains. In particular, it was
shown that confinement strongly affects local ordering
of dust grains. For example, hard-wall confinement
induces transition to a glassy state in cooled dusty plas-
mas because of higher dust concentration at the wall,
while a plasma crystal is observed in a parabolic con-
fining potential. Local ordering and formation of layers
of dust grains were observed in the experiments
reported in [26].

This study focuses on local ordering of dust grains
in three-dimensional narrow channels with parabolic
and hard-wall confining potentials. As in two-dimen-
sional geometry, the pair interaction between dust
grains is described by a screened Coulomb (Debye–
Hückel or Yukawa) potential

where 

 

r

 

 is the interparticle distance and 

 

λ

 

D

 

 is the
screening length. Since we examine crystallization
characteristics of the dust subsystem, we consider a
strongly coupled state of a complex plasma, when the
nonideality parameter of the dust subsystem is

where 

 

T

 

d

 

 is the dust temperature and 

 

κ

 

 = 

 

∆

 

/

 

λ

 

D

 

 is called

 

shielding parameter.

φ r( ) Zd/r( ) r/λD–( ),exp=

Γ Zd
2 κ–( )/Td∆ � 1,exp=

 

Behavior of an ensemble of dust grains is investi-
gated by 3D molecular dynamics simulation. For sim-
plicity, all dust grains are assumed to have a constant
charge 

 

Z

 

d

 

. The dynamics of each dust grain is described
by the equation of motion

(1)

The terms on the right-hand side of (1) represent the
electrostatic interaction between dust grains, the drag
force on the grain due to collisions with neutral atoms
and buffer gas molecules, and the stochastic Langevin
force 

 

L

 

i

 

 with autocorrelation function

and zero mean value 

 

〈

 

L

 

i

 

(

 

t

 

)

 

〉

 

 = 0, and the effect of the
confining potential 

 

Φ

 

c

 

.
System (1) was computed for an ensemble of 

 

N 

 

=
16000 dust grains randomly distributed over the chan-
nel volume at the starting instant. Figure 1 illustrates
the problem geometry. The potential 

 

Φ

 

c

 

 confines the
dust distribution along the 
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axis to the interval 0 

 

≤

 

 

 

z
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L

 

z

 

. In the 

 

xy

 

 plane, the grains occupy the region 0 
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. Periodic boundary conditions are used at 
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 =
{0, 
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} and 
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 = {0, 
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}. The confining potential is either
a parabolic one, 
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, or an elastic hard
wall (
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exp(–

 

z

 

/

 

∆

 

w

 

) at 
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< 0, where the length scale characterizes
the stiffness of the wall; 

 

∆

 

w

 

 

 

≈

 

 

 

∆

 

/3 is used in the present
simulations).

In the thermodynamic limit, the state of an infinite
system of particles with Yukawa pair interaction is
determined by the nonideality parameter 

 

Γ

 

 and the
shielding parameter 

 

κ: it can crystallize into either face-
centered cubic (fcc) or body-centered cubic (bcc) lat-
tice, depending on whether κ is large or small, respec-
tively (e.g., see [2]). Nonequilibrium systems of
Yukawa particles frequently organize into long-lived
metastable phases with hexagonal close-packed (hcp)
lattices (e.g., see, [14, 20]), because the Gibbs free

m ṙ̇i Zd∇Φc– Zd ∇φ∑– mγ ṙi– Li.+=

Li t( )L j t τ+( )〈 〉 2γmkBδijδ τ( )=

y x

z

Fig. 1. Geometry of the problem. Initially, N dust grains with charge Zd are randomly distributed over the volume between two plane
boundaries, which confine them to the region 0 ≤ z ≤ Lz . In the xy plane, the grains occupy the region 0 ≤ x, y ≤ Lx, y .
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energies of formation of hcp and bcc phases are nearly
equal [27]. To identify an fcc, bcc, or hcp lattice, it is
sufficient to know the ordering ABC in three consecu-
tive lattice planes. If they are known, the lattice type can
be identified by visual inspection. For this reason, the
behavior of a three-layer Yukawa system is examined
here as an illustrative example. Some results obtained
by simulating the behavior of a Yukawa system in nar-
row channels are presented below for confinements of
different types. The parameters of the simulated
Yukawa system are as follows: grain size a ≈ 1 µm,
grain charge Zd/e ≈ 3 × 103, κ varying between 2 and 3,
and neutral-gas density ρg ~ 10–7 g/cm3.

Figure 2 shows the normalized dust density distribu-
tion ρN and the normalized number of grains N/Ntot in
the three layers as functions of the distance between the
layers for both types of confinement. As the system
contracts (parameter κ ≡ ∆/λ decreases), the dust den-
sity goes through a bifurcation, and transition to a two-
layer structure occurs at a certain point. Conversely,
expansion of the system (κ increases), leads to the for-
mation of a four-layer structure. Thus, the three-layer
system with particular Γ and λD can exist only within a
certain range of κ values (determined by Lz).

Note also that the transverse dust density (along the
z axis) changes significantly as the system approaches
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Fig. 2. Normalized dust particle density ρN vs.  ≡ z/Lz in (a) parabolic and (b) hard-wall confinements for several values of Lz (i.e.,
κ). In case (b), the dust distributions at the boundaries (not shown) correspond to narrow, sharply bounded symmetric layers. The
values of Lz are chosen to demonstrate the state of a dust-grain system near the bifurcation points corresponding to transformations
into four-layer, two-layer, and intermediate stable three-layer structures (3–4 transition, dotted curves; 3–2 transition, solid curves;
and dot-and-dash curves, respectively). Also shown are the normalized grain number N/Ntot in each layer and N/Ntot( ) for 3–4
transitions (�), 3–2 transitions (�), and stable three-layer system (�).
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a bifurcation point. For both types of confinement, the
central-layer density obviously decreases as the system
contracts. In hard-wall confinement, the number of
grains in the central layer is smaller than in each layer
at the boundary [20]. The difference increases as the
system contracts, since grains leave the central layer
and the layer becomes much sparser near the point of
transition to two-layer structure. As the three-layer sys-
tem expands and transforms into four layers, the total
number of grains in the central two layers after the
bifurcation approximately equals that in the stable

intermediate regime (see Fig. 2b), because these layers
consist of the grains of the single central layer.

In parabolic confinement, the central layer contains
more grains than each layer at the boundary and loses
them as the system contracts (see Fig. 2a). In this case,
a three-layer Yukawa system with equal number of
grains in each layer can easily be created, and a perfect
plasma crystal can be produced by its crystallization.
Figures 3a, 3b and 3c, 3d illustrate the location of dust
grains in a three-layer Yukawa system in parabolic and
hard-wall confinements, respectively. Here, the quasi-
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Fig. 3. Dust crystallization in a narrow channel for (a, b) parabolic and (c, d) hard-wall confinement. The grayscale value of a grain
image depends on coordinate: white, gray, and black images correspond to the first, second, and third layers, respectively. Shown
are (a, c) quasi-steady configurations and (b, d) those near the point of transition to the two-layer state. Domains of different lattice
types, including those of quasi-crystalline (QC) phase, are represented. Inserts show the pair correlation functions g(r/∆) calculated
for the corresponding grain distributions. Solid curves represent the central layer. The pair correlation functions obtained for the
upper and lower layers (dashed curves) are almost identical for both types of confinement.
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steady crystalline phase of a Yukawa system is shown
for Γ ~ 104. The grayscale value of a grain image corre-
sponds to a particular layer (coordinate on the z axis).
Figures 3a and 3c correspond to the intermediate den-
sity distributions represented by solid curves in Fig. 2,
and Figures 3b and 3d illustrate the state of the system
near the 3–2 transition point for the two confinement
types discussed here.

It is clear that parabolic confinement mainly results
in the formation of crystallites with ABA ordering of
lattice planes (where the first layer is screened by the
third one), which is characteristic of hcp and bcc phases
(Fig. 3a). A relatively small number of clusters (approx-
imately 1%) have icosahedral symmetry, with each par-
ticle in the central layer having five nearest neighbors
located at the boundary. As this system approaches the
3–2 transition point (Fig. 3b), an hcp lattice transforms
into a bcc/fcc one; i.e., a phase transition occurs
between solid states.

In the case of a hard-wall confinement (Fig. 3c), dis-
tinct regions of ABA ordering (hcp/bcc phase) and ABC
ordering (third-layer particles) are clearly seen. A sig-
nificant portion of the dust is organized into fcc and hcp
lattices. It is interesting that a new, quasi-crystalline
(QC) phase emerges in hard-wall confinement [20]. As
the system contracts (Fig. 3d), both QC and hcp phases
disappear, and only fcc/bcc domains remain, with
numerous stringlike defects. A more detailed discus-
sion of lattice types and local ordering in the systems
under study is presented below.

The inserts to Fig. 3 show the pair correlation func-
tions

(2)

calculated for each layer in the corresponding particle
distribution. Solid curves represent the central layers.
The pair correlation functions obtained for the upper
and lower layers (dashed curves) are nearly identical
for both types of confinement. Strong effect of confine-
ment type on g(r) and significant depletion of the cen-
tral layer caused by contraction are particularly obvious
in the case of hard-wall confinement.

Thus, our simulations of dust behavior in narrow
channels lead to an important conclusion: both density
of charged dust grains and their distribution between
layers (and therefore, distribution of defects) can be
manipulated by varying the distance between the sys-
tem’s boundaries (or the shielding parameter κ).

It is frequently required to know the lattice type
resulting from crystallization in narrow channels. It can
be determined by using local rotational invariants [28].
In this approach, the number Nb(i) of nearest neighbors
is determined for each ith particle by analyzing Voronoi

g r( ) V

N2
------ δ r rij–( )

j i≠

N

∑
i

N

∑=

polyhedra and Delaunay simplices, which is generally
smaller than

where V and N are the system’s volume and total particle
number, respectively, and rm is the first minimum point
of the pair correlation function g(r). The bond vectors rij
between each ith particle and its nearest neighbors
(j = 1, Nb) are then used to calculate the parameter

(3)

where Ylm(θ, φ) is are spherical harmonics, and θ and φ are
the polar angles of the bond vector rij. Being dependent on
the coordinate system, qlm(i) are poorly suited for deter-
mining local orientational order, but they can be used to
calculate the second- and third-order rotational invariants

(4)

(5)

where  are Wigner 3j symbols. Since

each lattice type is characterized by a unique set of ql

and ml , the observed crystalline structure can be identi-

fied by comparing the corresponding values of  and

 with those for perfect lattices.
Crystalline structure is generally identified by using

the second-order invariants q4 and q6 and the third-
order invariants w4 and w6 (e.g., see [28, 29]), which
can easily be calculated for fcc/hcp/ico/bcc crystals.
For fcc/hcp/ico, Nb = 12 and the values of these invari-

ants are  = 0.1909,  = 0.5745,  = –0.1593,

and  = –0.01316 for the face-centered cubic lattice;
 = 0.0972,  = 0.4847,  = 0.1341, and

 = –0.01244 for the hexagonal close-packed lat-

tice; and  = 0,  = 0.6633,  = –0.1593, and
 = –0.1697 for the icosahedral lattice.

Since  is large for all lattice types considered
here, it can be used to examine early nucleation/crystal-
lization stages in various systems (e.g., see [29]). For
weakly ordered systems, such as gases or liquids, the

average 〈q6〉 ≈  is much smaller than ; for
example 〈q6〉 ≈ 0.29 for Nb = 12.
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For the simple cubic lattice (with Nb = 8),  =
0.5092,  = 0.6285,  = –0.1593, and  = 0.1316.
To identify bcc clusters, it is frequently required to take
into account the second neighbor shell, which is located
at a relatively close distance ((2/  – 1)∆ ≈ 0.15∆)
from the first one. The corresponding second-nearest-
neighbor number is Nb = 14, while  = 0.0363,

 = 0.510,  = 0.1593, and  = 0.01316. Even
though ql and wl for various lattices have been pub-
lished, in part, in the pioneering study [28], we list them
here because incorrect values can frequently be found
in the literature. Figure 4 shows the distribution of the
local rotational invariants q4, q6, and w4 for the grain
distributions shown in Figs. 3a and 3b for parabolic
confinement and in Figs. 3c and 3d for hard-wall con-
finement. For parabolic confinement, almost perfect
hcp/fcc/bcc phases are easily identified in Fig. 3a, and
the disappearance of hcp and fcc phases (domination of
the bcc phase) resulting from the 3–2 transition is obvi-
ous (see Fig. 3). For hard-wall confinement, fcc and hcp
phases are easily identified, while the bcc phase is
almost absent (Fig. 3c), and small fcc/bcc clusters
remain as the 3–2 transition point is approached (see
Fig. 3).

The lattice of a real plasma crystal is always dis-
torted because of various factors. For example, a differ-
ence in slow particle drift between different regions of
the crystal can give rise to shear stresses and, therefore,

q4
sc

q6
sc w4

sc w6
sc

3

q4
bcc

q6
bcc w4

bcc w6
bcc

to its local distortion. Rotational motion can give rise to
torsional defects on scales comparable to ∆. Crystalline
structure can also be distorted by short-wavelength
acoustic disturbances. Anisotropy of the particle inter-
action potential (due to the ion flux to the walls in the
electron region of RF discharge), as well as dipole–
dipole interaction between grains, may cause lattices of
other types to appear in the system. For example, in
addition to the bcc lattice (with a = b = c), bct (body-
centered tetragonal) and bco (body-centered ortho-
rhombic) phases may form (with a = b ≠ c and a ≠ b, c ≠
a, c ≠ b, respectively). In narrow channels, distorted
fcc/hcp clusters may form, depending on the confine-
ment type. Therefore, of interest are the changes in ql
and wl due to various distortions of fcc/hcp/ico/bcc lat-
tices. Data of this kind are given in Fig. 5, where the
variations of ql and wl due to weak shear, compres-
sion/dilation, and torsion of these lattices (without
change in the nearest neighbors) are shown on the q4q6
plane. Note that these distortions generally reduce the
value of q6 for all of the lattice types. Note also that
local invariants are more sensitive to torsion and less
sensitive to shear and compression. The data shown in
Fig. 5 can be used to find dilated hcp/fcc lattices and
quasi-crystalline phase regions (torsional defects of
fcc/hcp lattice) in Fig. 3c.

In summary, molecular dynamics simulations are
used in this study to examine the effect of the confining
potential on crystallization of Yukawa particles systems
in 3D narrow channels. The parabolic and hard-wall
confinements considered here as models of “soft” and
“hard” confinements induce different behavior of dust
density at the boundaries and thus have strong affect
local order and lattice type. Compression or dilation of
the examined three-layer Yukawa system leads to bifur-
cation and formation of a two- or four-layer system,
respectively. This results in significant changes in dust
density and transverse distribution between layers, sug-
gesting that dust-grain flux can easily be manipulated in
such systems. This conclusion has is extremely impor-
tant for applications in nano- and micromechanics and
physics of nano- and microliquids.
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