Skip to main content
Log in

Supramolecular Complexes of Tetrapeptides Capable of Inducing the Human α-Lactalbumin β-Domain Conformational Transitions

  • STRUCTURE OF MACROMOLECULAR COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

It is shown using small-angle X-ray scattering (SAXS) that the tetrapeptide, which is an inductor of fibrillogenesis for a fragment of α-human lactalbumin β-domain, is active in the form of supramolecular complexes. Formation of these complexes was not detected by microscopy and analytical gel filtration. Molecular-dynamics simulation of the behavior of an ensemble of tetrapeptides using the free diffusion method confirmed their experimentally observed tendency to form oligomers. The obtained data and methodical approaches can be applied to develop new peptide drugs, which can modulate the activity of proteins by affecting their spatial structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. P. Mangione, R. Porcari, J. D. Gillmore, et al., Proc. Natl. Acad. Sci. 111 (4), 1539 (2014). https://doi.org/10.1073/pnas.1317488111

    Article  ADS  Google Scholar 

  2. S. J. Andrews and J. A. Rothnagel, Nat. Rev. Genet. 15 (3), 193 (2014). https://doi.org/10.1038/nrg3520

    Article  Google Scholar 

  3. H. Wu, Cell 153 (2), 287 (2013). https://doi.org/10.1016/j.cell.2013.03.013

    Article  Google Scholar 

  4. Y. A. Zabrodskaya, D. V. Lebedev, M. A. Egorova, et al., Biophys. Chem. 234, 16 (2018). https://doi.org/10.1016/j.bpc.2018.01.001

    Article  Google Scholar 

  5. E. Michiels, K. Roose, R. Gallardo, et al., Nat. Commun. 11 (1), 1 (2020). https://doi.org/10.1038/s41467-020-16721-8

    Article  Google Scholar 

  6. R. Gallardo, M. Ramakers, F. De Smet, et al., Science 354 (6313), aah4949 (2016). https://doi.org/10.1126/science.aah4949

    Article  Google Scholar 

  7. V. V. Egorov, K. V. Solovyov, N. A. Grudinina, et al., Protein Pept. Lett. 14 (5), 471 (2007). https://doi.org/10.2174/092986607780782858

    Article  Google Scholar 

  8. V. V. Egorov, Yu. P. Garmai, K. V. Solov’ev, et al., Dokl. Biochem. Biophys. 414 (1), 152 (2007). https://doi.org/10.1134/S1607672907030167

    Article  Google Scholar 

  9. V. Tuohy, R. Jaini, J. Johnson, et al., Cancer 8 (6), 56 (2016). https://doi.org/10.3390/cancers8060056

    Article  Google Scholar 

  10. V. V. Egorov, D. V. Lebedev, A. A. Shaldzhyan, et al., Prion 8 (5), 369 (2014). https://doi.org/10.4161/19336896.2014.983745

    Article  Google Scholar 

  11. V. V. Kadochnikov, V. V. Egorov, A. V. Shvetsov, et al., Crystallogr. Rep. 61 (1), 98 (2016). https://doi.org/10.1134/S1063774516010089

    Article  ADS  Google Scholar 

  12. PepCalc Com.: Peptide Calculator. https://pepcalc.com/

  13. T. Narayanan, M. Sztucki, P. Van Vaerenbergh, et al., J. Appl. Crystallogr. 51 (6), 1511 (2018). https://doi.org/10.1107/S1600576718012748

    Article  Google Scholar 

  14. D. I. Svergun and M. H. J. Koch, Rep. Prog. Phys. 66 (10), 1735 (2003). https://doi.org/10.1088/0034-4885/66/10/R05

    Article  ADS  Google Scholar 

  15. SasView: Small Angle Scattering Analysis. http://www.sasview.org/

  16. LLC Schrödinger. The PyMOL Molecular Graphics System, Version 2.4

  17. M. J. Abraham, T. Murtola, R. Schulz, et al., SoftwareX 1–2, 19 (2015). https://doi.org/10.1016/J.SOFTX.2015.06.001

    Article  ADS  Google Scholar 

  18. J. A. Maier, C. Martinez, K. Kasavajhala, et al., J. Chem. Theory Comput. 11 (8), 3696 (2015). https://doi.org/10.1021/acs.jctc.5b00255

    Article  Google Scholar 

  19. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys. 79 (2), 926 (1983). https://doi.org/10.1063/1.445869

    Article  ADS  Google Scholar 

  20. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., J. Chem. Phys. 81 (8), 3684 (1984). https://doi.org/10.1063/1.448118

    Article  ADS  Google Scholar 

  21. S. Nosé, J. Chem. Phys. 81 (1), 511 (1984). https://doi.org/10.1063/1.447334

    Article  ADS  Google Scholar 

  22. W. G. Hoover, Phys. Rev. A 31 (3), 1695 (1985). https://doi.org/10.1103/PhysRevA.31.1695

    Article  ADS  Google Scholar 

  23. G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97 (4), 2635 (1992). https://doi.org/10.1063/1.463940

    Article  ADS  Google Scholar 

  24. G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mol. Phys. 87 (5), 1117 (1996). https://doi.org/10.1080/00268979600100761

    Article  ADS  Google Scholar 

  25. M. Parrinello and A. Rahman, J. Appl. Phys. 52 (12), 7182 (1981). https://doi.org/10.1063/1.328693

    Article  ADS  Google Scholar 

  26. S. Nosé and M. L. Klein, Mol. Phys. 50 (5), 1055 (1983). https://doi.org/10.1080/00268978300102851

    Article  ADS  Google Scholar 

  27. A. V. Shvetsov, Y. A. Zabrodskaya, P. A. Nekrasov, and V. V. Egorov, J. Biomol. Struct. Dyn. 36 (10), 2694 (2018). https://doi.org/10.1080/07391102.2017.1367329

    Article  Google Scholar 

  28. Y. A. Zabrodskaya, A. V. Shvetsov, V. B. Tsvetkov, and V. V. Egorov, J. Biomol. Struct. Dyn. 37 (12), 3041 (2019). https://doi.org/10.1080/07391102.2018.1507837

    Article  Google Scholar 

  29. C. M. Sorensen, J. Cai, and N. Lu, Langmuir 8 (8), 2064 (1992). https://doi.org/10.1021/la00044a029

    Article  Google Scholar 

  30. E. Gazit, Prion 1 (1), 32 (2007). https://doi.org/10.4161/pri.1.1.4095

    Article  Google Scholar 

  31. M. Reches, Y. Porat, and E. Gazit, J. Biol. Chem. 277 (38), 35475 (2002). https://doi.org/10.1074/jbc.M206039200

    Article  Google Scholar 

  32. N. Haspel, D. Zanuy, B. Ma, et al., J. Mol. Biol. 345 (5), 1213 (2005). https://doi.org/10.1016/j.jmb.2004.11.002

    Article  Google Scholar 

  33. J. Zhou, X. Du, and B. Xu, Prion 9 (2), 110 (2015). https://doi.org/10.1080/19336896.2015.1022021

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The SAXS curves were obtained at the European Synchrotron Radiation Facility (Grenoble, France), experiment no. LS2508 @ID02.

Funding

This study was supported by the National Research Centre “Kurchatov Institute” (order no. 1363, dated June 25, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Egorov.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabrodskaya, Y.A., Shvetsov, A.V., Garmay, Y.P. et al. Supramolecular Complexes of Tetrapeptides Capable of Inducing the Human α-Lactalbumin β-Domain Conformational Transitions. Crystallogr. Rep. 66, 840–845 (2021). https://doi.org/10.1134/S1063774521050254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521050254

Navigation