Skip to main content
Log in

PyFepRestr: Plugin to PyMOL Molecular Graphics System for Calculating the Free Energy of Ligand‒Receptor Binding

  • COMPUTER SOFTWARE
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The calculations of the free energy of ligand binding with a receptor (most often, protein) are widely used in the rational design of new bioactive compounds. The gold standard of such calculations is the equilibrium methods based on molecular dynamics and the “alchemical” transformations, including the thermodynamic integration and Bennett method. Technically, these methods call for introduction of additional restraints on the mutual arrangement of atoms in the ligand–receptor system. A plugin to the PyMOL molecular graphics system has been developed to facilitate the introduction of required restraints and analytical calculation of correction when computing the free energy of ligand‒receptor (protein) binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Aldeghi, A. Heifetz, M. J. Bodkin, et al., Chem. Sci. 7, 207 (2016). https://doi.org/10.1039/c5sc02678d

    Article  Google Scholar 

  2. D. B. Kitchen, H. Decornez, J. R. Furr, et al., Nat. Rev. Drug Discovery 3, 935 (2004). https://doi.org/10.1038/nrd1549

    Article  Google Scholar 

  3. J. Li, A. Fu, L. Zhang, et al., Interdiscipl. Sci.: Comput. Life Sci. 11, 320 (2019). https://doi.org/10.1007/s12539-019-00327-w

    Article  Google Scholar 

  4. C. Chipot, Wiley Interdiscipl. Rev.: Comput. Mol. Sci. 4 (1), 71 (2014). https://doi.org/10.1002/wcms.1157

    Article  Google Scholar 

  5. P. V. Klimovich, M. R. Shirts, and D. L. Mobley, J. Comput. Aided Mol. Des. 29 (5), 397 (2015). https://doi.org/10.1007/s10822-015-9840-9

    Article  ADS  Google Scholar 

  6. C. H. Bennett, J. Comput. Phys. 22 (2), 245 (1976). https://doi.org/10.1016/0021-9991(76)90078-4

    Article  ADS  MathSciNet  Google Scholar 

  7. M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 124105 (2008). https://doi.org/10.1063/1.2978177

    Article  ADS  Google Scholar 

  8. J. Kirkwood, J. Chem. Phys. 3, 300 (1935). https://doi.org/10.1063/1.1749657

    Article  ADS  Google Scholar 

  9. W. L. DeLano and J. W. Lam, Abstr. Papers Am. Chem. Soc. 230, 1371 (2005).

    Google Scholar 

  10. P. H. Hunenberger and J. A. McCammon, Biophys. Chem. 78, 69 (1999). https://doi.org/10.1016/s0301-4622(99)00007-1

    Article  Google Scholar 

  11. G. J. Rocklin, D. L. Mobley, K. A. Dill, et al., J. Chem. Phys. 139, 184103 (2013). https://doi.org/10.1063/1.4826261

    Article  ADS  Google Scholar 

  12. M. R. Shirts, D. L. Mobley, J. D. Chodera, et al., J. Phys. Chem. 111 (45), 13052 (2007). https://doi.org/10.1021/jp0735987

    Article  Google Scholar 

  13. C. L. Wennberg, T. Murtola, B. Hess, et al., Chem. Theory Comput. J. 9, 3527 (2013). https://doi.org/10.1021/ct400140n

    Article  Google Scholar 

  14. D. Van Der Spoel, E. Lindahl, B. Hess, et al., J. Comput. Chem. 26, 1701 (2005). https://doi.org/10.1002/jcc.20291

    Article  Google Scholar 

  15. S. Boresch, F. Tettinger, M. Leitgeb, et al., J. Phys. Chem. B 107, 9535 (2003). https://doi.org/10.1021/jp0217839

    Article  Google Scholar 

  16. P. A. Eistrikh-Geller, S. V. Rubinskii, I. I. Prokof’ev, et al., Crystallogr. Rep. 65 (2), 269 (2020).

    Article  ADS  Google Scholar 

  17. B. Hess, H. Bekker, H. J. C. Berendsen, et al., J. Comput. Chem. 18, 1463 (1997). https://doi.org/10.1002/(SICI)1096-987X(199709)18:123.0.CO;2-H

    Article  Google Scholar 

  18. J. C. Phillips, J. Comput. Chem. 26, 1781 (2005). https://doi.org/10.1002/jcc.20289

    Article  Google Scholar 

  19. G. Fiorin and M. L. Klein, Mol. Phys. 111, 3345 (2013). https://doi.org/10.1080/00268976.2013.813594

    Article  ADS  Google Scholar 

  20. D. L. Mobley, J. D. Chodera, and K. A. Dill, J. Chem. Phys. 125 (8), 084902 (2006). https://doi.org/10.1063/1.2221683

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using the equipment of the Shared Equipment Center of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences.

Funding

This study was carried out within the state assignment to the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences and supported by the Ministry of Science and Higher Education of the Russian Federation, project no. RFMEFI62119X0035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lashkov.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashkov, A.A., Tolmachev, I.V., Eistrikh-Heller, P.A. et al. PyFepRestr: Plugin to PyMOL Molecular Graphics System for Calculating the Free Energy of Ligand‒Receptor Binding. Crystallogr. Rep. 66, 861–865 (2021). https://doi.org/10.1134/S1063774521050126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521050126

Navigation