Skip to main content
Log in

Theoretical Study of Structural, Electronic, Optical, and Elastic Properties of KLiX (X: S, Se, and Te) under Hydrostatic Pressure: A Pseudo Potential Plane Wave (PP-PW) Contribution

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

We have studied structural, electronic, optical, and elastic properties of KLiX under pressure using the Density Functional Theory (DFT) within the Generalized Gradient Approximation (GGA) and the Local Density Approximation (LDA) for the exchange and correlation potential. The obtained structural results such as lattice parameters and internal sites of K atoms and chalcogenides are in good accordance with the available experimental and theoretical data. Band structure analysis shows that these compounds exhibit semiconductor properties with an indirect gap (Z → Г) for KLiS, KLiSe and direct gap (Г → Г) in the case of KLiTe using GGA, but in the use of LDA all compounds have an indirect energy gap (Z → Г) which take values 3.258 (3.455), 2.723 (2.810), and 2.441 (2.685) eV for KLiS, KLiSe, and KLiTe using GGA (LDA) respectively. These energy gap values decreased with increasing chalcogenide size (S → Se → Te). The combination of the states density and the charge density analysis confirms mixing of an ionic and a covalent chemical bonding character in the studied compounds. The optical properties such as the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 12 eV. The elastic constants and their pressure dependence are calculated using the static finite strain technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. H. Sabrowsky and U. Schröer, Z. Naturforsch B. 37, 818 (1982).

    Article  Google Scholar 

  2. H. Sabrowsky, A. Thimm, and P. Mertens, Z. Naturforsch. B. 40, 733 (1985).

    Article  Google Scholar 

  3. H. Sabrowsky, R. Mertens, and A. Thimm, Z. Kristallogr. 171, 1 (1985).

    Google Scholar 

  4. H. Sabrowsky, R. Mertens, and F. O. Dönhoff, Z. Naturforsch B. 40, 122 (1985).

    Article  Google Scholar 

  5. H. Sabrowsky, A. Thimm, and R. Vogt, Z. Anorg. Allg. Chem. 546, 169 (1987).

    Article  Google Scholar 

  6. H. Sabrowsky and R. Vogt, Z. Anorg. Allg. Chem. 553, 226 (1987).

    Article  Google Scholar 

  7. K. Hippler, P. Vogt, R. Wortmann, and H. Sabrowsky, Z. Naturforsch B. 44, 1607 (1989).

    Article  Google Scholar 

  8. R. D. Hitzbleck, P. Vogt, and H. Sabrowsky, Z. Naturforsch B. 44, 1602 (1989).

    Article  Google Scholar 

  9. W. Bronger, C. Bomba, and H. Sabrowsky, J. Less-Common Met. 156, 43 (1989).

    Article  Google Scholar 

  10. H. Sabrowsky, R. D. Hitzbleck, and P. Vogt, Z. Naturforsch B, 48, 1835 (1993).

    Article  Google Scholar 

  11. T. Seddik, R. Khenata, A. Bouhemadou, et al., Comput. Mater. Sci. 61, 206 (2012).

    Article  Google Scholar 

  12. D. Rached, M. Rabah, N. Benkhettou, et al., Comput. Mater. Sci. 37, 292 (2006).

    Article  Google Scholar 

  13. Y. Al-Douri, H. Baaziz, Z. Charifi, and Ali H. Reshk, Physica B 407, 286 (2012).

    Article  ADS  Google Scholar 

  14. M. Ameri, K. Boudi, A. Rabhi, et al., Mater. Sci. Appl. 3, 861 (2012).

    Google Scholar 

  15. T. Seddik, R. Khenata, A. Bouhemadou, et al., Physica B 428, 78 (2013).

    Article  ADS  Google Scholar 

  16. Y. Al-Douri and U. Hashim, J. Renewable Sustainable Energy, 6, 013109 (2014).

    Article  Google Scholar 

  17. Y. Al-Douri, H. Khachai, and R. Khenata, Mater. Sci. Semicond. Proc. 39, 276 (2015).

    Article  Google Scholar 

  18. A. Benkabou, H. Bouafia, B. Sahli, et al., Chin. J. Phys. 54, 33 (2016).

    Article  Google Scholar 

  19. K. Boudiaf, A. Bouhemadou, O. Boudrifa, et al., J. Electron. Mater. 46, 4539 (2017).

    Article  ADS  Google Scholar 

  20. M. Berrahal, M. Ameri, Y. AL-Douri, et al., Mater. Sci. Pol. 33, 699 (2015).

    Article  ADS  Google Scholar 

  21. M. Amari. M. Ameri, A. Z. Bouyakoub, et al., J. Supercond. Novel Magn. 31, 915 (2018).

    Article  Google Scholar 

  22. B. Abderrahim, M. Ameri, D. Hachemane, et al., Chin. J. Phys. 55, 769 (2017).

    Article  Google Scholar 

  23. Z. Souadia, A. Bouhemadou, O. Boudrifa, et al., High Pressure Res. 37, 558 (2017).

    Article  ADS  Google Scholar 

  24. K. Bidai, M. Ameri, S. Amel, et al., Chin. J. Phys. 55, 2144 (2017).

    Article  Google Scholar 

  25. K. Bidai, M. Ameri, I. Ameri, et al., Arch. Metall. Mater. 62, 865 (2017).

    Article  Google Scholar 

  26. N. Tayebi, K. Bidai, M. Ameri, et al., Chin. J. Phys. 55, 769 (2017).

    Article  Google Scholar 

  27. K. Bidai, M. Ameri, A. Zaoui, et al., Chin. J. Phys. 54, 678 (2016).

    Article  Google Scholar 

  28. K. Bidai, M. Ameri, D. Bensaid, et al., Optik 127, 5155 (2016).

    Article  ADS  Google Scholar 

  29. K. Bidai, M. Ameri, D. Bensaid, et al., Mater. Sci. Pol. 33, 649 (2015).

    Article  ADS  Google Scholar 

  30. M. D. Segall, P. J. D. Lindan, M. J. Probert, et al., J. Phys. Condens. Matter 14, 2717 (2002).

    Article  ADS  Google Scholar 

  31. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  ADS  Google Scholar 

  32. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  33. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  34. J. D. Pack and H. J. Monkhorst, Phys. Rev. B 16, 1749 (1977).

    Article  ADS  Google Scholar 

  35. T. H. Fischer and J. Almlof, J. Phys. Chem. 96, 9768 (1992).

    Article  Google Scholar 

  36. V. Milman and M. C. Warren, J. Phys.: Condens. Matter 13, 241 (2001).

    ADS  Google Scholar 

  37. A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).

    Article  Google Scholar 

  38. W. Voigt, Lehrburch der Kristallphysik (Teubner, Leipzig, 1928).

    Google Scholar 

  39. R. Hill, Proc. Phys. Soc. A. 65, 349 (1952).

    Article  ADS  Google Scholar 

  40. Y. Shen and Z. Zhou, J. Appl. Phys. 103, 074113 (2008).

    Article  ADS  Google Scholar 

  41. M. Dadsetani and A. Pourghazi, Phys. Rev. B. 73, 195102 (2006).

    Article  ADS  Google Scholar 

  42. F. D. Murnaghan, Am. J. Math. 49, 235 (1937).

    Article  Google Scholar 

  43. F. D. Murnaghan, Proc. Nat. Acad. Sci., 30, 244 (1944).

    Article  ADS  MathSciNet  Google Scholar 

  44. F. D. Murnaghan, Finite Deformation of an Elastic Solid (Dover, New York, 1967).

    MATH  Google Scholar 

  45. F. Birch, J. Appl. Phys. 9, 279 (1938).

    Article  ADS  Google Scholar 

  46. P. Vinet, J. Ferrante, J. H. Rose, and J. Smith, J. Geophys. Res. 92, 9319 (1987).

    Article  ADS  Google Scholar 

  47. P. Vinet, J. H. Rose, J. Ferrante, and J. Smith, J. Phys: Condens. Matter. 1, 1941 (1989).

    ADS  Google Scholar 

  48. G. Grimvall, Thermo-Physical Properties of Materials (North-Holland, Amsterdam, 1999)

    Google Scholar 

  49. A. R. Oganov, J. P. Brodholt, and G. D. Price, Ab Initio Theory of Thermo-Elasticity and Phase Transitions in Minerals, in EMU Notes in Mineralogy, Vol. 4: Energy Modeling in Minerals, Ed. by C. M. Gramaccioli (Eötvös University Press, Budapest, 2002), Ch. 5, p. 83.

  50. B. B. Karki, L. Stixrude, S. J. Clark, et al., Am. Mineral. 82, 51 (1997).

    Article  ADS  Google Scholar 

  51. A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).

    Article  Google Scholar 

  52. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928)

    MATH  Google Scholar 

  53. R. Hill, Proc. Phys. Soc. A 65, 349 (1952).

    Article  ADS  Google Scholar 

  54. R. Hill, J. Mech. Phys. Solids 11, 357 (1963).

    Article  ADS  Google Scholar 

  55. S. F. Pugh, Philos. Magn. 45, 823 (1954).

    Article  Google Scholar 

  56. M. Reffas, A. Bouhemadou, K. Haddadi, et al., Eur. Phys. J. B 87, 283 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fatmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reffas, M., Fatmi, M., Cherrad, D. et al. Theoretical Study of Structural, Electronic, Optical, and Elastic Properties of KLiX (X: S, Se, and Te) under Hydrostatic Pressure: A Pseudo Potential Plane Wave (PP-PW) Contribution. Crystallogr. Rep. 66, 489–507 (2021). https://doi.org/10.1134/S1063774521030202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521030202

Navigation