Skip to main content
Log in

Protein crystallization under microgravity conditions. Analysis of the results of Russian experiments performed on the International Space Station in 2005−2015

  • Reviews
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Conditions of mass transport to growing crystals have a considerable effect on the crystal size and quality. The reduction of convective transport can help improve the quality of crystals for X-ray crystallography. One approach to minimizing convective transport is crystallization in a microgravity environment, in particular, in space. The data obtained by our research team in protein crystallization experiments on the International Space Station are surveyed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Wiencek, Ann. Rev. Biomed. Eng. 1, 505 (1999).

    Article  Google Scholar 

  2. A. Defant, I. Mancini, R. Tomazzolli, et al., Arch. Pharm. 348 (1), 23 (2015).

    Article  Google Scholar 

  3. J. D. McCorvy and B. L. Roth, Pharm. Ther. 150, 129 (2015).

    Article  Google Scholar 

  4. P. Molina-Espeja, J. Vina-Gonzalez, B. J. Gomez-Fernandez, et al., Biotechnol. Adv. (2016) (in press).

    Google Scholar 

  5. R. Giege, FEBS J. 280 (24), 6456 (2013).

    Article  Google Scholar 

  6. A. McPherson and J. A. Gavira, Acta Crystallogr. F 70, (1), 2 (2014).

    Article  Google Scholar 

  7. K. M. Boyko, V. O. Popov, and M. V. Kovalchuk, Russ. Chem. Rev. 84 (8), 853 (2015).

    Article  ADS  Google Scholar 

  8. M. L. Grant and D. A. Saville, J. Cryst. Growth 108 (1–2), 11 (1991).

    ADS  Google Scholar 

  9. H. Lin, F. Rosenberger, J. I. D. Alexander, et al., J. Cryst. Growth 151 (1–2), 10 (1995).

    Google Scholar 

  10. I. P. Kuranova, Poverkhnost 6, 9 (2004).

    Google Scholar 

  11. W. Littke and C. John, Science 225, 203 (1984).

    Article  ADS  Google Scholar 

  12. E. Kundrot, A. J. Russel, M. L, et al., Cryst. Growth Des. 1, 87 (2001).

    Article  Google Scholar 

  13. E. H. Snell and J. H. Helliwell, Rep. Prog. Phys. 68, 799 (2005).

    Article  ADS  Google Scholar 

  14. S. D. Trakhanov, A. I. Grebenko, V. A. Shirokov, et al., J. Cryst. Growth 110, 317 (1991).

    Article  ADS  Google Scholar 

  15. S. D. Trakhanov, A. I. Grebenko, and V. A. Shirokov, Dokl. Akad. Nauk SSSR 305, 1128 (1989).

    Google Scholar 

  16. V. I. Strelov, I. P. Kuranova, B. G. Zakharov, et al., Crystallogr. Rep. 59 (6), 781 (2014).

    Article  ADS  Google Scholar 

  17. C. Betzel, N. Gunther, S. Poll, et al., Microgravity Sci. Technol. 7 (3), 242 (1994).

    Google Scholar 

  18. V. A. Erdmann, C. Lippmann, C. Betzel, et al., FEBS Lett. 259 (1), 194 (1989).

    Article  Google Scholar 

  19. B. Lorber, Bba-Proteins Proteom. 1599 (1–2), 1 (2002).

    Article  Google Scholar 

  20. B. Lorber, A. Theobald-Dietrich, C. Charron, et al., Acta Crystallogr. D 58, 1674 (2002).

    Article  Google Scholar 

  21. E. H. Snell and J. R. Helliwell, Rep. Prog. Phys. 68 (4), 799 (2005).

    Article  ADS  Google Scholar 

  22. J. Symersky, Y. Devedjiev, K. Moore, et al., Acta Crystallogr. D 58, 1138 (2002).

    Article  Google Scholar 

  23. I. Russo Krauss, A. Merlino, A. Vergara, et al., Int. J. Mol. Sci. 14 (6), 11643 (2013).

    Article  Google Scholar 

  24. R. Krauspenhaar, W. Rypniewski, N. Kalkura, et al., Acta Crystallogr. D 58, 1704 (2002).

    Article  Google Scholar 

  25. A. E. Miele, L. Federici, G. Sciara, et al., Acta Crystallogr. D 59, 982 (2003).

    Article  Google Scholar 

  26. T. Kinoshita, R. Maruki, M. Warizaya, et al., Acta Crystallogr. F 61, 346 (2005).

    Article  Google Scholar 

  27. H. Tanaka, K. Inaka, S. Sugiyama, et al., J. Synchrotron Radiat. 11 (1), 45 (2004).

    Article  Google Scholar 

  28. J. D. Ng, B. Lorber, R. Giege, et al., Acta Crystallogr. D 53, 724 (1997).

    Article  Google Scholar 

  29. J. D. Ng, C. Sauter, B. Lorber, et al., Acta Crystallogr. D 58, 645 (2002).

    Article  Google Scholar 

  30. E. V. Blagova and I. P. Kuranova, Kristallografiya 44 (3), 20 (1999).

    Google Scholar 

  31. E. A. Smirnova, Yu. A. Kislitsin, N. I. Sosfenov, et al., Crystallogr. Rep. 54 (5), 743 (2009).

    Article  ADS  Google Scholar 

  32. I. G. Shabalin, A. E. Serov, O. E. Skirgello, et al., Crystallogr. Rep. 55 (5), 806 (2010).

    Article  ADS  Google Scholar 

  33. V. R. Samygina, Russ. Chem. Rev. 85 (5), 464 (2016).

    Article  ADS  Google Scholar 

  34. T. Krojer, A. C. Pike, and F. von Delft, Acta Crystallogr. D 69 (7), 1303 (2013).

    Article  Google Scholar 

  35. E. V. Rodina, V. R. Samygina, N. N. Vorobyeva, et al., Biochemistry-Moscow 74 (7), 734 (2009).

    Article  Google Scholar 

  36. V. I. Timofeev, R. N. Chuprov-Netochin, V. R. Samigina, et al., Acta Crystallogr. F 66 (3), 259 (2010).

    Article  Google Scholar 

  37. J. M. Garcia-Ruiz, L. A. Gonzalez-Ramirez, J. A. Gavira, et al., Acta Crystallogr. D 58, 1638 (2002).

    Article  Google Scholar 

  38. S. Takahashi, T. Tsurumura, K. Aritake, et al., Acta Crystallogr. F 66, 846 (2010).

    Article  Google Scholar 

  39. T. P. Roosild, S. Castronovo, M. Fabbiani, et al., BMC Struct. Biol. 9, 14 (2009).

    Article  Google Scholar 

  40. D. Renck, R. G. Ducati, M. S. Palma, et al., Arch. Biochem. Biophys. 497 (1–2), 35 (2010).

    Article  Google Scholar 

  41. T. N. Safonova, N. N. Mordkovich, K. M. Polyakov, et al., Acta Crystallogr. F 68, 1387 (2012).

    Article  Google Scholar 

  42. T. N. Safonova, S. N. Mikhailov, V. P. Veiko, et al., Acta Crystallogr. D 70 (12), 3310 (2014).

    Article  Google Scholar 

  43. D. Oliver, B. Sheehan, H. South, et al., BMC Cell Biol. 11, 101 (2010).

    Article  Google Scholar 

  44. A. Bonchuk, S. Denisov, P. Georgiev, et al., J. Mol. Biol. 412 (3), 423 (2011).

    Article  Google Scholar 

  45. S. E. Ealick, S. A. Rule, D. C. Carter, et al., J. Biol. Chem. 265 (3), 1812 (1990).

    Google Scholar 

  46. K. F. Jensen and P. Nygaard, Eur. J. Biochem./FEBS 51 (1), 253 (1975).

    Article  Google Scholar 

  47. C. Mao, W. J. Cook, M. Zhou, et al., Structure 5 (10), 1373 (1997).

    Article  Google Scholar 

  48. I. A. Mikhailopulo and A. I. Miroshnikov, Mendeleev Commun. 21, 57 (2011).

    Article  Google Scholar 

  49. L. A. Myers, M. S. Hershfield, W. T. Neale, et al., J. Pediatr. 145 (5), 710 (2004).

    Article  Google Scholar 

  50. E. M. Bennett, R. Anand, P. W. Allan, et al., Chem. Biol. 10 (12), 1173 (2003).

    Article  Google Scholar 

  51. L. G. Pogosyan, L. S. Nersesova, M. G. Gazaryants, et al., Ukr. Biokhim. Zh. 80 (5), 95 (2008).

    Google Scholar 

  52. L. G. Pogosyan, L. S. Nersesova, M. G. Gazaryants, et al., Biomed. Khim. 57 (5), 526 (2011).

    Article  Google Scholar 

  53. V. I. Timofeev, A. Yu. Abramchik, N. E. Zhukhlistova, et al., Crystallogr. Rep. 61 (2), 249 (2016).

    Article  ADS  Google Scholar 

  54. V. I. Timofeev, Yu. A. Abramchik, I. V. Fateev, et al., Crystallogr. Rep. 58 (6), 842 (2013).

    Article  ADS  Google Scholar 

  55. V. Timofeev, Y. Abramchik, N. Zhukhlistova, et al., Acta Crystallogr. D 70 (4), 1155 (2014).

    Article  Google Scholar 

  56. V. I. Timofeev, E. A. Smirnova, L. A. Chupova, et al., Crystallogr. Rep. 55 (6), 1050 (2010).

    Article  ADS  Google Scholar 

  57. V. Timofeev, E. Smirnova, L. Chupova, et al., Acta Crystallogr. D 68 (12), 1660 (2012).

    Article  Google Scholar 

  58. P. Aloy, V. Companys, J. Vendrell, et al., J. Biol. Chem. 276 (19), 16177 (2001).

    Article  Google Scholar 

  59. R. A. Skidgel, Trends Pharmacol. Sci. 9 (8), 299 (1988).

    Article  Google Scholar 

  60. A. Teplyakov, K. Polyakov, G. Obmolova, et al., Eur. J. Biochem./FEBS 208 (2), 281 (1992).

    Article  Google Scholar 

  61. I. P. Kuranova, E. A. Smirnova, Yu. A. Abramchik, et al., Crystallogr. Rep. 56 (5), 884 (2011).

    Article  ADS  Google Scholar 

  62. V. I. Timofeev, S. A. Kuznetsov, V. K. Akparov, et al., Biokhimiya 78 (3), 338 (2013).

    Google Scholar 

  63. V. Akparov, N. Sokolenko, V. Timofeev, et al., Acta Crystallogr. F 71 (10), 1335 (2015).

    Article  Google Scholar 

  64. V. Akparov, V. I. Timofeev, I. G. Khaliullin, et al., FEBS J. 282 (7), 1214 (2015).

    Article  Google Scholar 

  65. D. Ng, Proc. 1-st International Symposium Space Science of High Quality Protein Crystallization Technology (Univ. of Tokyo, Tokyo, 2015), p. 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Boyko.

Additional information

Original Russian Text © K.M. Boyko, V.I. Timofeev, V.R. Samygina, I.P. Kuranova, V.O. Popov, M.V. Koval’chuk, 2016, published in Kristallografiya, 2016, Vol. 61, No. 5, pp. 691–702.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyko, K.M., Timofeev, V.I., Samygina, V.R. et al. Protein crystallization under microgravity conditions. Analysis of the results of Russian experiments performed on the International Space Station in 2005−2015. Crystallogr. Rep. 61, 718–729 (2016). https://doi.org/10.1134/S1063774516050059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774516050059

Navigation