Skip to main content
Log in

Spectroscopic Redshift Measurements for Galaxy Clusters from the Planck Survey and Observations of These Clusters in the SRG/eROSITA Survey

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present the results of our spectroscopic redshift measurements for galaxy clusters detected previously from Planck all-sky survey data as well as Sloan Digital Sky Survey and WISE all-sky survey data. The redshifts have been measured for 23 clusters, including four galaxy clusters from the second Planck catalogue of Sunyaev–Zeldovich sources. The main spectroscopic observations were carried out during 2019–early 2020 at the 1.6-m AZT-33IK telescope of the Sayan Observatory and the 1.5-m Russian–Turkish telescope (RTT-150). Some of the data have been obtained previously at the 3.5-m Calar Alto telescope. Out of the 23 clusters in this sample, 14 objects are located in the half of the sky where the rights to the data from the eROSITA sky survey onboard the SRG orbital X-ray observatory belong to the Russian side. All these clusters were detected with the eROSITA telescope in the course of the sky survey during 2020. On the whole, we have measured the spectroscopic redshifts for 220 galaxy clusters within our program of optical identifications of galaxy clusters from the Planck catalogue during several years. Many of them have already been detected in the SRG/eROSITA survey; a significant fraction of these objects are among the most massive galaxy clusters of the eROSITA sky survey and will most likely enter into cosmological samples of clusters from this survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://hea.iki.rssi.ru/rtt150/ru/index.php?page=tfosc.

  2. http://iraf.noao.edu/.

  3. https://www.eso.org/sci/observing/tools/standards.html.

  4. http://ckp-rf.ru/ckp/3056/.

REFERENCES

  1. G. O. Abell, H. G. Corwin, Jr., and R. P. Olowin, Astroophys. J. Suppl. Ser. 70, 1 (1989).

    Article  ADS  Google Scholar 

  2. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. (Planck 2013 Results XX), Astron. Astrophys. 571, A20 (2014a).

    Article  Google Scholar 

  3. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. (Planck 2013 Results XXIX), Astron. Astrophys. 571, A29 (2014b).

    Article  Google Scholar 

  4. P. A. R. Ade, N. Aghanim, M. Arnaud, et al. (Planck Intemediate Results XXVI), Astron. Astrophys. 582, A29 (2015a).

    Article  Google Scholar 

  5. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. (Planck 2013 Results XXXII), Astron. Astrophys. 581, A14 (2015b).

    Article  Google Scholar 

  6. P. A. R. Ade, N. Aghanim, M. Arnaud, et al. (Planck 2015 Results XXIV), Astron. Astrophys. 594, A24 (2016a).

    Article  Google Scholar 

  7. P. A. R. Ade, N. Aghanim, M. Arnaud, et al. (Planck 2015 Results XXVII), Astron. Astrophys. 594, A27 (2016b).

    Article  Google Scholar 

  8. P. A. R. Ade, N. Aghanim, M. Arnaud, et al. (Planck Intermediate Results XXXVI), Astron. Astrophys. 586, A139 (2016c).

    Article  Google Scholar 

  9. V. L. Afanasiev, S. N. Dodonov, V. R. Amirkhanyan, and A. V. Moiseev, Astrophys. Bull. 71, 479 (2016).

    Article  ADS  Google Scholar 

  10. A. Aguado-Barahona, R. Barrena, A. Streblyanska, A. Ferragamo, J. A. Rubino-Martin, D. Tramonte, and H. Lietzen, Astron. Astrophys. 631, A148 (2019); arXiv:1909.06235.

  11. F. D. Albareti, C. A. Prieto, A. Almeida, et al. (SDSS Collab.), Astroophys. J. Suppl. Ser. 233, 25 (2017).

    Article  ADS  Google Scholar 

  12. R. Barrena, A. Ferragamo, J. A. Rubiño-Martín, A. Streblyanska, A. Aguado-Barahona, et al., Astron. Astrophys. 638, A146 (2020).

    Article  Google Scholar 

  13. G. Bruzual and S. Charlot, Mon. Not. R. Astron. Soc. 344, 1000 (2003).

    Article  ADS  Google Scholar 

  14. R. A. Burenin, Astron. Letters 41, 167 (2015).

    Article  ADS  Google Scholar 

  15. R. A. Burenin, Astron. Lett. 43, 507 (2017).

    Article  ADS  Google Scholar 

  16. R. A. Burenin, A. L. Amvrosov, M. V. Eselevich, V. M. Grigor’ev, V. A. Aref’ev, V. C. Vorob’ev, A. A. Lutovinov, M. G. Revnivtsev, S. Yu. Sazonov, A. Yu. Tkachenko, G. A. Khorunzhev, A. L. Yaskovich, and M. N. Pavlinsky, Astron. Lett. 42, 295 (2016).

    Article  ADS  Google Scholar 

  17. R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, I. A. Zaznobin, G. A. Khorunzhev, M. V. Eselevich, V. L. Afanasiev, S. N. Dodonov, J.-A. Rubino-Martín, N. Aghanim, and R. A. Sunyaev, Astron. Lett. 44, 297 (2018).

    Article  ADS  Google Scholar 

  18. K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, C. Z. Waters, et al., arxiv.org:1612.05560.

  19. E. Churazov, A. Vikhlinin, and R. Sunyaev, Mon. Not. R. Astron. Soc. 450, 1984 (2015).

    Article  ADS  Google Scholar 

  20. A. Dey, D. J. Schlegel, D. Lang, R. Blum, K. Burleigh, X. Fan, et al., Astron. J. 157, 168 (2019).

    Article  ADS  Google Scholar 

  21. I. M. Khamitov, I. F. Bikmaev, R. A. Burenin, M. V. Glushkov, S. S. Mel’nikov, and A. R. Lyapin, Astron. Lett. 46, 1 (2020).

    Article  ADS  Google Scholar 

  22. A. M. Meisner, D. Lang, and D. J. Schlegel, Astron. J. 154, 161 (2017).

    Article  ADS  Google Scholar 

  23. A. Merloni, P. Predehl, W. Becker, H. Böhringer, T. Boller, H. Brunner, et al., arXiv:1209.3114 (2012).

  24. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, et al., Astron. Astrophys. (in press); arXiv:2010.03477 (2020).

  25. E. S. Rykoff, E. Rozo, M. T. Busha, C. E. Cunha, A. Finoguenov, A. Evrard, et al., Astrophys. J. 758, 2 (2014).

    Google Scholar 

  26. A. Streblyanska, R. Barrena, J. A. Rubiño-Martín, R. F. van der Burg, N. Aghanim, A. Aguado-Barahona, et al., Astron. Astrophys. 617, A71 (2018).

    Article  ADS  Google Scholar 

  27. A. Streblyanska, A. Aguado-Barahona, A. Ferragamo, R. Barrena, J. A. Rubiño-Martín, et al., Astron. Astrophys. 628, A13 (2019).

    Article  Google Scholar 

  28. R. A. Sunyaev and Ya. B. Zeldovich, Commun. Astrophys. Space Phys. 4, 173 (1972).

    ADS  Google Scholar 

  29. R. A. Sunyaev et al., Astron. Astrophys. (2021, in press).

  30. A. Vikhlinin, R. A. Burenin, H. Ebeling, W. R. Forman, A. Hornstrup, C. Jones, A. V. Kravtsov, et al., Astrophys. J. 692, 1033 (2009a).

    Article  ADS  Google Scholar 

  31. V. S. Vorob’ev, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, S. N. Dodonov, R. Ya. Zhuchkov, E. N. Irtuganov, A. V. Mescheryakov, S. S. Melnikov, A. N. Semena, A. Yu. Tkachenko, N. Aghanim, and R. A. Sunyaev, Astron. Lett. 42, 63 (2016).

    Article  ADS  Google Scholar 

  32. Z. L. Wen, J. L. Han, and F. S. Liu, Astroophys. J. Suppl. Ser. 199, 2 (34) (2012).

  33. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri, T. Jarrett, J. D. Kirkpatrick, D. Padgett, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

  34. I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, V. V. Konoplev, M. V. Eselevich, V. L. Afanasiev, S. N. Dodonov, J.-A. Rubino-Martín, N. Aghanim, and R. A. Sunyaev, Astron. Lett. 45, 49 (2019).

    Article  ADS  Google Scholar 

  35. I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, A. R. Lyapin, M. V. Eselevich, V. L. Afanasiev, S. N. Dodonov, and R. A. Sunyaev, Astron. Lett. 46, 79 (2020).

    Article  ADS  Google Scholar 

  36. F. Zwicky, E. Herzog, P. Wild, M. Karpowicz, and C. T. Kowal, Catalogue of Galaxies and of Clusters of Galaxies (California Inst. Technol., Pasadena, 1961), Vol. 1.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by RSF grant no. 18-12-00520. We thank TÜBITAK, the Space Research Institute of the Russian Academy of Sciences, the Kazan Federal University, and the Academy of Sciences of Tatarstan for supporting the observations at the Russian–Turkish 1.5-m telescope (RTT-150). The measurements with the AZT-33IK telescope were performed within the basic financing of the FNI II.16 program and were obtained using the equipment of the Angara sharing center.Footnote 4 In this study we used observational data from the eROSITA telescope onboard the SRG observatory. The SRG observatory was built by Roskosmos in the interests of the Russian Academy of Sciences represented by its Space Research Institute (IKI) within the framework of the Russian Federal Space Program, with the participation of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The SRG/eROSITA X-ray telescope was built by a consortium of German Institutes led by MPE, and supported by DLR. The SRG spacecraft was designed, built, launched, and is operated by the Lavochkin Association and its subcontractors. The science data are downlinked via the Deep Space Network Antennae in Bear Lakes, Ussurijsk, and Baykonur, funded by Roskosmos. The eROSITA data used in this work were processed using the eSASS software system developed by the German eROSITA consortium and the proprietary data reduction and analysis software developed by the Russian eROSITA Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zaznobin.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaznobin, I.A., Burenin, R.A., Bikmaev, I.F. et al. Spectroscopic Redshift Measurements for Galaxy Clusters from the Planck Survey and Observations of These Clusters in the SRG/eROSITA Survey. Astron. Lett. 47, 61–70 (2021). https://doi.org/10.1134/S1063773721020055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773721020055

Keywords:

Navigation