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Abstract—An analytical solution for the perturbed equations, applicable to all ergodic models of collisionless
spherical stellar systems with a single length parameter, has been derived. This solution corresponds to varia-
tions in this parameter, i.e., the expansion or contraction of the sphere while conserving total mass. During
this process, the system maintains an equilibrium state. The simplicity of the solution allows for the explicit
expression of the distribution function, potential, and density across all orders of perturbation theory. This,
in turn, aids in clarifying the concept of perturbation energy, which, being of second order in amplitude, can-
not be calculated using linear theory. It is demonstrated that the correct expression for perturbation energy,
accounting for second-order perturbations, does not align with the well-known expression for perturbation
energy via a quadratic form, derived from first-order perturbations within linear theory. However, both these
energies are integrals of motion and differ only by a constant. The derived solution can be utilized to verify
the correctness of codes and the precision of calculations in the numerical study of collisionless stellar
models.
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1. INTRODUCTION
One of the traditional methods for studying the

perturbation dynamics of equilibrium models of
spherical stellar systems is to study the evolution of
small perturbations. As a rule, the main question of
interest to researchers is whether the equilibrium state,
described by the distribution function (DF)  of
stars and the gravitational potential , is stable or
unstable. Along with methods consisting in finding
general stability criteria by deriving the corresponding
theorems (see, e.g., monograph [1], hereinafter BT,
and references therein), there is a method for solving a
linearized eigenvalue problem. For this, assuming that
the perturbations of the gravitational potential 
and DF  are small and proportional to

, the eigenvalues ω of the linearized system
of equations, consisting of the collisionless kinetic
equation and the Poisson equation, are found. The
presence of eigenvalues with  means that the
system is unstable.

Finding the eigenvalues  is a rather computa-
tionally expensive task. Except for a few models, where
the equilibrium potential is harmonic (see, e.g.,
[2‒5]), it is solved using the so-called matrix meth-
ods. In these methods, the problem reduces to numer-
ically finding the roots  of a certain determinant

 = 0, . For disk
models, the matrix method was first proposed by
Kalnajs [6], and for spherical systems, by Polyachenko
and Shukhman [7]. It consists in expanding the ampli-
tudes  and  of the perturbed potential and den-
sity  and  in the so-
called biorthonormal set of potential–density basis
pairs  and  and obtaining a system of linear
equations for the expansion coefficients . The
equality of the determinant of this system to zero leads
to the desired dispersion relation. This method works
for systems with an integrable Hamiltonian , i.e., for
equilibrium stellar systems, the potential  of
which allows a conversion from the coordinate–veloc-
ity variables  to the action–angle variables .
In the alternative matrix method proposed by E. Poly-
achenko (see [8, 9]), the original system of linearized
equations reduces to a standard linear eigenvalue prob-

lem of the form ,

where  are the harmonics of the Fourier expan-
sion of the perturbed DF in angular variables  and

 is the kernel.
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Recently, a number of works have appeared [10–
13], studying the dynamics of perturbations against the
background of equilibrium models not with the aim of
studying their stability, as happened over the previous
decades and was reflected in numerous works and
monographs (see, e.g., [1, 14, 15] and references
therein), but with the aim of studying f luctuations of
density and potential around equilibrium and their
effect on the processes of slow relaxation, as well as
their role in the process of N-body numerical simula-
tion of processes in stellar systems. The equilibrium
models under their consideration are knowingly stable
systems, and perturbations in them can be caused
either by the noise associated with a finite number 
of particles [12] or by an external action. In this case,
weakly damped oscillations are of interest, which can
last for many characteristic crossing times, being
almost identical to real neutral eigenmodes [16, 17].

In stable equilibrium spherical systems, there are
no discrete modes with Im . Due to the revers-
ibility of the collisionless kinetic equation in time,
there are no damped discrete modes, with Im .
The presence of discrete neutral modes, with
Im , is possible only in rare situations. This is
due to the presence of resonances of disturbance waves
with the orbital motion of stars of the type

, where  are the fre-
quencies of the orbital motion and  are
integer numbers; therefore, neutral discrete modes are
possible only in the presence of “gaps” in the phase
space that are free from resonance.1 It turns out that,
for such equilibrium models, the complete system of
eigenmodes is represented exclusively by the continu-
ous spectrum of van Kampen modes [19] with a real
frequency . Note that a perturbation that decays
exponentially according to the so-called Landau damp-
ing [20], in which the frequency  has a negative imag-
inary part, , , is not
a true damped eigenmode, but represents a continuum
superposition of singular van Kampen modes. To dis-
tinguish a Landau-damped perturbation from a true
eigenmode, we will call it a quasi-mode. We traced in
more detail the dynamics of initial perturbations in the
form of a superposition of van Kampen modes and its
relation with Landau quasi-modes for infinite homo-
geneous gravitating systems in [21] and, for the case of
shear f luid f lows, in [22].

The presence of weakly damped Landau quasi-
modes plays a significant role for stable systems. In
terms of van Kampen modes, their presence means
that their amplitude is especially large when the van
Kampen mode frequencies  are close to the real part
of the Landau quasi-mode frequency: .
On the other hand, their presence allows oscillations

1 Mathur [18], considering radial perturbations, argued that such
neutral modes are possible in principle, but did not give specific
examples of the corresponding DFs.
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excited, say, by the close passage of a disturbing exter-
nal body, to last for a rather long time practically
undamped [16].

Therefore, the search for Landau quasi-modes for
stable systems is of interest. However, from a practical
point of view, finding Landau quasi-modes poses sig-
nificant difficulties. The fact is that the dispersion
relation obtained by any of the matrix methods
described above [7–9] holds only in the upper half-
plane of the complex variable , while the frequencies
of Landau quasi-modes lie in the lower half-plane of

. This is related to the principle of causality and was
repeatedly described in the literature, starting with the
pioneering work of Landau [20] (see also BT [1]). In
order to use the dispersion relation  to find
the frequencies of Landau quasi-modes, it is neces-
sary to perform an analytical continuation of the func-
tion  into the lower half-plane of the complex
variable . Landau [20] was the first to perform this
procedure for a homogeneous electron plasma. To do
this, he deformed the integration contour over the
(only one in his problem) variable velocity , shifting
it into the complex plane of  so that it passed below
all possible resonance points . This proce-
dure is called the Landau–Lin bypass rule, since Lin
[23] derived the same bypass rule for shear f lows of an
inviscid f luid, but based not on the principle of causal-
ity (meaning that the perturbation must disappear in
the distant past), like Landau, but on the principle of
dissipativity (i.e., by adding an infinitesimal positive
viscosity to the inviscid Euler equation).

The problem of finding the analytical continuation
 for equilibrium spherical stellar systems is much

more difficult than in a homogeneous plasma [20], in
an infinite homogeneous gravitating medium [21], or
in shear f luid f lows [22]. Firstly, even in the simplest
case of self-consistent models, we are dealing with at
least a two-dimensional phase space in the variables of
action  rather than with a one-dimensional one,
where we have to work with integrals containing only a
single velocity component, parallel to a fixed direction
of the wave vector . The second problem making the
analytical continuation more difficult is associated
with the presence in the integrals over the phase vol-
ume of not a single resonant denominator of the form

, but an infinite number of them of the form
. The first of these problems was over-

come by Barré et al. [24] by considering a one-dimen-
sionally nonuniform system with an artificial, rather
simple one-dimensional interaction potential between
particles (not gravitational), reducing the problem to a
one-dimensional one, albeit with a large number of
resonant denominators of the type .

For spherical systems with a real gravitational
potential (more precisely, for King’s models [25]), an
attempt to construct an analytic continuation of the
determinant  into the lower half-plane was made
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by Weinberg [16]. To do this, he approximated the
function  in the upper half-plane by a sum of
fractional-rational functions that admit a simple ana-
lytic continuation to the lower half-plane and, having
obtained an approximate expression for the analytic
continuation of , found (for certain model
parameters) the frequencies of weakly damped Lan-
dau quasi-modes. Although the results of this work are
widely cited in the literature, from our point of view,
they are not convincing enough.

Another way to find Landau exponential decay is to
directly solve the evolution equation (more precisely,
a system of equations) for the Fourier harmonics of
the perturbed DF . To do this, it is necessary to
specify the initial DF  and the corresponding
perturbed potential . If the equilibrium state
under consideration contains a Landau quasi-mode, it
must manifest itself for any choice of the initial DF,
since the determinant  depends only on the prop-
erties of the unperturbed system, and the presence of
zeros in its lower half-plane means that, asymptoti-
cally, perturbations of the density and potential must
decay exponentially. This follows from the fact that the
zeros of  are poles of the Laplace image of the
perturbation. The corresponding procedure for solv-
ing the evolution equation for an infinite homoge-
neous medium [21] and for shear f luid f lows [22] was
performed explicitly and demonstrated full agreement
of the asymptotic behavior of the amplitude  of
stellar density perturbations or the amplitude of total
vorticity across the channel, , with

the Landau damping with a frequency  found from
the condition .

The aforesaid means that the problem of numerical
study of the perturbation in stable systems depends
rather strongly on the selected codes and calculation
parameters: the grid on the phase plane, the number of
retained Fourier harmonics in the variables , and the
number of retained basis functions. Therefore, the
presence of a test perturbation for code verification is
highly desirable. One such test perturbation has long
been known. It consists in a shift of the spherical sys-
tem as a whole. If this shift occurs, say, along the  axis
by a small distance , then the perturbation in the den-
sity and the potential that arise in this case are

 and ,
respectively. This is a dipole shear perturbation corre-
sponding to a spherical harmonic .
Obviously, the natural frequency  corresponding to
this perturbation is zero. This test has been repeatedly
used previously when verifying codes in the analysis of
stability (see, e.g., [26–28]).

In this paper, we propose another simple test per-
turbation, which admits an exact solution. It works for
a very specific class of spherical models, namely, for
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models described by DFs that depend only on energy
 and contain a single length parameter .

This exact solution allows us to simultaneously
clarify another issue concerning the correct definition
of the concept of perturbation energy. The fact is that
the perturbation energy, being a quantity quadratic in
amplitude, at first glance, in principle, cannot be cal-
culated in linear theory. However, it can be shown that
the system of linearized kinetic equation and Poisson’s
equation admits a quadratic integral of motion, whose
form is very similar to the total perturbation energy,
which, strictly speaking, is not the same as the true
energy, since its calculation requires knowledge of the
perturbations of the DF, the potential, and the density
of the second order. The test perturbation proposed
allows one to calculate the perturbation energy in any
order and perform a comparison of these two second-
order “energies”.

In Section 2, we present the idea of a test perturba-
tion and give several examples of models of self-con-
sistent equilibrium DFs, whose spectrum contains the
considered mode. In Section 3, we will consider in
more detail the concept of perturbation energy, which
can be constructed within linear theory, and, using a
scale-invariant perturbation as an example, compare
the accurately calculated energy (taking into account
the second-order perturbations) with the generally
accepted expression for the perturbation energy in
linear theory. The results obtained are discussed in
Section 4.

2. THE IDEA OF A TEST PERTURBATION
AND SEVERAL EXAMPLES

OF RELEVANT DF MODELS

Let the spherical model be described by an equilib-
rium DF containing a single characteristic scale in the
radial variable . It will be called the scale factor and
denoted by . For such models, the unperturbed
potential and density have the form

(1)

where  and  are related by Poisson’s equation:
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where the dimensionless energy  should also be
regarded as a function of , , and the scale factor :

(4)

Here, the dimensionless function  is normalized
so that .

It is absolutely clear that, if we fix the total mass ,
but change , we will get the same equilibrium model,
but only with a different scale factor, . But this
means that the eigenfrequency  of the mode corre-
sponding to such expansion/contraction is equal to zero.
This fact can serve as a test of various codes when study-
ing the perturbation dynamics in spherical systems.

Let us give several examples of models that have
this form.

2.1. Isochrone Hénon model [29]
For it, the function  entering into the potential is

(5)

the density is

(6)

and the distribution function is
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2.2. Hernquist model [30]
The potential for it is
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2.3. Jaffe model [31]
The potential for it is

(11)

the density is

(12)

and the distribution function is

(13)

where

(14)

2.4. Plummer model [32]
The potential for it is

(15)

the density is
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and the distribution function is
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Note that the Plummer model is a special case of a

series of polytropic models with a distribution func-
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these models have no explicit analytical expression for
the potential , but there is a corresponding sec-
ond-order nonlinear equation for the potential, fol-
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tion). Analysis of this equation shows (see BT) that
polytropic models with  have infinite mass and
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are irrelevant. However, models with ,
which, although they have (unlike the models given
above) a finite radius , must nevertheless also contain
a scale-invariant mode in the spectrum, since this
radius is the only length scale in the model. In partic-
ular, for , when the Lane–Emden equation
becomes linear, there is an analytical solution with
finite radius and mass:

(20)

(21)

Note that models with  have a positive sign of

the derivative with respect to the energy ,

i.e.,  and, in principle, may be unstable. We
will not discuss this issue in more detail here.

Consider the change in model parameters, associ-
ated with variations in the scale factor , :

(22)
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Here,  is the expansion parameter. Note
that we have prepared an expansion of all quantities up
to the second order. Although, linear theory does not
require the knowledge of second-order quantities, we
do this in order to obtain a correct expression for
potential and kinetic energies, which are quantities of
the second order in the perturbation amplitude and
cannot be calculated simply as a bilinear form from
first-order quantities. Setting , we have the
following expressions for the potential,
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The prime in the designations of functions means the
derivative with respect to the corresponding argument.
Henceforward, without loss of generality, we can
accept  and write, using (25),

(29)

It is easy to verify that the perturbation of the system’s
mass due to such perturbations of the DF and density
is indeed equal to zero in both the first and second
orders: .

First-order perturbations of , , and  com-
prise a test perturbation corresponding to the eigenfre-
quency . If we analyze the perturbation dynam-
ics by solving a system of evolution equations for the
amplitudes of the Fourier harmonics  of the per-
turbed DF, specifying the initial DF in the form (27)
and the potential in the form (25), we must obtain

.
Indeed, the linearized kinetic equation for radially

perturbed  and  in the action–angle
variables has the form
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the radial action , ;  is
the angular momentum; and  is the angular
variable conjugate to the radial action, . In
harmonics, we have
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Equation (31) was actually tested on the isochrone
model (7), for which it suffices to simply obtain ana-
lytical expressions relating the radial coordinate  to
the action–angle variables, or, which is equivalent here,
to the variables  and  and the radial angular vari-
able w.2 Knowing the parametric relation of  with ,

(33)

it is possible to numerically perform an expansion in
Fourier harmonics of the radial angular variable .
Setting functions (27) and (25), respectively, as the
initial perturbation of the DF  and potential  and
expanding them in harmonics,

indeed, we find that .

In addition, for this model, we can control the con-
servation of the total mass, i.e., the vanishing of the
integral of the zero harmonic of the perturbed DF over
the admissible region of the phase plane  in

the model, :

where  is the line of circular orbits and

.
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begin with gravitational potential energy. For the

2 Additional advantages of the isochrone model are that it has
explicit analytical expressions relating the Hamiltonian
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models under consideration, with a single scale
parameter , we have

(34)

Expanding  in a Taylor series in  and setting
, we have ,

where

(35)

We emphasize that expressions (35) provide correct
expressions for the first- and the second-order per-
turbations of the potential energy. In particular, it is
with the expression for  that we have to compare

the bilinear form  =

, which is usually called in the
literature the disturbance potential energy. On the
other hand, knowing explicit expressions (25) for

, we can check the correctness of expression
(35) by direct integration. In the first order,

, or, after the substitution

, ,

(36)

as it should be according to (35). In the second order,

(37)

where, given that (see (25)) , we

obtain, after a chain of integrations by parts,

(38)

Again it turned out that , as it should be
according to (35). Thus, we have seen for a test pertur-
bation that the correct expression for the second-order
potential energy  is obtained only by taking into
account the contribution to (37) of the second-order
potential . This means that the bilinear form

(39)

comprised only of the first-order perturbations, is not
the second-order potential energy.

On the other hand, it can be shown, without going
beyond the linear approximation, that, for perturba-
tions in systems with an ergodic  ( ) in
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the absence of external forces, there is a quadratic
integral of motion:3

(40)
where

(41)

This expression for  can be obtained by consider-
ing the work performed on the system by an external
force , which is considered a first-order quan-
tity (see [33], as well as [1], Section 5.4.2):

(42)

That is why the quantity  is usually associated with

the total perturbation energy, with  and 
being the kinetic and potential parts, respectively.4

However, our example with the test perturbation
shows that  is not true potential energy, implying

 might not be true kinetic energy either.
Indeed, the correct expression for the second-

order kinetic energy—let us call it —has the form:

(43)

and the correct expression for the total second-order
perturbation energy, which we denote by  (with-
out ), has the form

(44)
or

(45)

Note that the expression in square brackets in for-
mula (45) is a correct expression for potential energy

, taking into account the second-order contribu-
tion. This equation can be written as

3 It should be emphasized that, henceforward, we mark with the
“tilde” sign ( ) bilinear forms composed only of the first-order
quantities and, without the tilde sign, “honestly” calculated sec-
ond-order quantities that take into account the contribution of
second-order perturbations.

4 Recently, Lau and Binney [13] managed to generalize the
expression for the perturbation energy to the case of arbitrary
nonergodic systems with an integrable Hamiltonian, in particu-
lar, to the case of anisotropic spherical systems .
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where  is the energy of the star, which

is an integral of the motion of the unperturbed system.
We see that the correct expression (46) for the pertur-
bation energy, which includes all contributions, differs
from the formula (40), accepted in the literature (see,
e.g., [1]), in different expressions for both potential
and kinetic energy: , . Nevertheless, it
turns out that the time derivatives of their sums are the
same. In other words, although  and

, the sum  is equal to the sum
 up to an additive constant. Let us show it.

In the second order of the kinetic equation, we
have

(47)

Here, we have also added to the right-hand side an
external potential , which should serve as a
source of change in the total energy, since the gravita-
tional force  does work on the stars of the sys-
tem. Multiplying both sides of (47) by , integrating
over the phase volume, and taking into account that 
is the integral of unperturbed motion, we get

(48)

The first term on the right-hand side of (48) vanishes
due to the antisymmetry of the integrand with respect

to , since . The second term,

after a chain of transformations, turns into .

Indeed, for it we have from (48):
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The third term turns into :

(50)

As a result, combining (48)–(50), we find that the rate
of change in the system’s energy, caused by the work of
the external force, is

(51)

Comparing the right-hand sides of (42) and (51), we
find . Thus, the true total pertur-
bation energy  differs from the bilinear con-
struction , usually called the perturbation
energy, by a constant. This means that both of these
second-order quantities, in the absence of external
forces, are conserved during the evolution of the sys-
tem. Therefore, the construction  expressed by
relations (40) and (41), by analogy with the linear the-
ory of shear f luid f lows, can be called pseudoenergy.
Recall that, in the theory of shear f lows, there is also
the concept of a pseudoenergy integral, which is con-
structed as a bilinear form of first-order perturbations.
Pseudoenergy differs from true energy, which must be
calculated taking into account second-order perturba-
tions (see [22, 34]).

Note that pseudoenergy and true second-order
energy may differ in sign. In particular, it can be shown
that the pseudoenergy of the eigenmodes of systems

with a decreasing ergodic DF,  (i.e., the van
Kampen modes [12]), is positive, although the true
energy can be of any sign. This circumstance may be
important from the viewpoints of attempts to con-
struct the thermodynamics of star clusters based on
the involvement of van Kampen waves [12]. For the
success of such attempts, the positive sign of the
energy is critical. However, for example, for our test
perturbation, the true energy is negative. This fol-
lows from the virial relation , which
must be satisfied in all orders of perturbation theory
due to the stationarity of the perturbation. In partic-
ular, in the second order, we have .

Hence . But, as follows

from (38), .

4. CONCLUSIONS
We have shown that, for testing codes in a numeri-

cal study of the dynamics of small perturbations in
spherical stellar systems, there is a control radial sta-
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tionary perturbation for which the distribution func-
tion, density, and gravitational potential can be
expressed in explicit form. This perturbation is rele-
vant for ergodic systems, in the models of which there
is a single scale factor of the dimension of length.
Examples of several models of this type known in the
literature have been given. When solving the eigen-
value problem (by any of the known matrix methods),
this perturbation must give the eigenfrequency 
and the corresponding known eigenfunctions, and,
when solving the initial value problem for the pertur-
bation of the DF , must confirm the conserva-
tion of the DF at each point of the phase space,

, if the test value is taken as the ini-
tial perturbation.

In addition, in this work, we have analyzed the
concept of perturbation energy, which appears in the
linear theory of perturbations of collisionless stellar
systems. It is known that, although the true perturba-
tion energy, being a quantity of the second order in the
perturbation amplitude, in principle, cannot be calcu-
lated within linear theory, it is possible to construct a
bilinear form from first-order quantities, which is an
integral of the linearized equations. This quantity is
very similar to energy and comprises the sum of two
contributions, which are usually called the kinetic and
potential perturbation energies. For a test perturbation
as an example, for which we can obtain expressions in
any order of perturbation theory, we have found that
the expressions for the kinetic and potential energies
obtained within linear theory differ from the correct
expressions for the kinetic and potential energies
obtained taking into account second-order perturba-
tions. In this work, it has been shown that, although
the integral of motion represented by the correct
expression for the perturbation energy and the integral
corresponding to the energy constructed within linear
theory (pseudoenergy) do not coincide, they differ
only by a time-independent value (constant). How-
ever, these quantities may differ in sign, which may be
important for problems related to the application of
van Kampen modes to stellar systems.
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