Skip to main content
Log in

The List of Possible Double and Multiple Open Clusters between Galactic Longitudes 240° and 270°

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract—This work studies the candidate double and multiple open clusters (OCs) in the galactic sector from l = 240° to l = 270°, which contains the Vela-Puppis star formation region. To do that, we have searched the most recent and complete catalogues of OCs by hand to get an extensive list of 22 groups of OCs involving 80 candidate members. Gaia EDR3 has been used to review some of the candidate OCs and look for new OCs near the candidate groups. Gaia data also permitted filtering out most of the field sources that are not member stars of the OCs. The plotting of combined color-magnitude diagrams of candidate pairs has allowed, in several cases, endorsing or discarding their link. The most likely systems are formed by OCs less than 0.1 Gyr old, with only one eccentric OC in this respect. No probable system of older OCs has been found. Preliminary estimations of the fraction of known OCs that form part of groups (9.4 to 15%) support the hypothesis that the Galaxy and the Large Magellanic Cloud are similar in this respect. The results indicate that OCs are born in groups like stars are born in OCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. D. Camargo, E. Bica, and C. Bonatto, Monthly Not. Roy. Astron. Soc. 455, 3126 (2016).

    Article  ADS  Google Scholar 

  2. F. G. Rozhavskii, V. A. Kuz’mina, and A. E. Vasilevskii, Astrophys. 12, 204 (1976).

    Article  ADS  Google Scholar 

  3. R.A. Vázquez, A. Moitinho, G. Carraro, W.S. Dias, Astron. and Astrophys. 511, A38 (2010).

    Article  ADS  Google Scholar 

  4. A. Subramaniam, U. Gorti, R. Sagar, and H. C. Bhatt, Astron. and Astrophys. 302, 86 (1995).

    ADS  Google Scholar 

  5. R. de La Fuente Marcos and C. de La Fuente Marcos, Astron. and Astrophys. 500, L13 (2009).

    Article  ADS  Google Scholar 

  6. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, and E. Plachy, Astron. and Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  7. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. De Bruijne, C. Babusiaux, M. Biermann, and N. Bauchet, Astron. and Astrophys. 649, A1 (2021).

    Article  Google Scholar 

  8. T. Cantat-Gaudin, C. Jordi, A. Vallenari, A. Bragaglia, L. Balaguer-Núñez, C. Soubiran, and R. Carrera, Astron. and Astrophys. 618, A93 (2018).

    Article  Google Scholar 

  9. A. Castro-Ginard, C. Jordi, X. Luri, J. Á. Cid-Fuentes, L. Casamiquela, F. Anders, and R. M. Badia, Astron. and Astrophys. 635, A45 (2020).

    Article  Google Scholar 

  10. E. L. Hunt and S. Reffert, Astron. and Astrophys. 646, A104 (2021).

    Article  ADS  Google Scholar 

  11. J. Casado, Res. Astron. and Astrophys. 21, 117 (2021).

    Article  ADS  Google Scholar 

  12. G. Beccari and H. M. Boffin, T. Jerabkova, Monthly Not. Roy. Astron. Soc. 491, 2205 (2020).

    Article  ADS  Google Scholar 

  13. N. V. Kharchenko, A. E. Piskunov, E. Schilbach, S. Röser, and R. D. Scholz, Astron. and Astrophys. 558, A53 (2013).

    Article  ADS  Google Scholar 

  14. E. Bica, D. B. Pavani, C. J. Bonatto, and E. F. Lima, Astron. J. 157, 12 (2019).

    Article  ADS  Google Scholar 

  15. L. Liu and X. Pang, Astrophys. J., Supp. Ser., 245, 32 (2019).

    Article  ADS  Google Scholar 

  16. G. Sim, S. H. Lee, H. B. Ann, and S. J. Kim, J. Korean Astron. Soc. 52, 145 (2019).

    ADS  Google Scholar 

  17. T. Cantat-Gaudin, F. Anders, A. Castro-Ginard, C. Jordi, M. Romero-Gómez, C. Soubiran, and M. Kounkel, Astron. and Astrophys. 640, A1 (2020).

    Article  Google Scholar 

  18. C. Conrad, R. D. Scholz, N. V. Kharchenko, A. E. Piskunov, S. Röser, E. Schilbach, and T. Zwitter, Astron. and Astrophys. 600, A106 (2017).

    Article  Google Scholar 

  19. W. S. Dias, B. S. Alessi, A. Moitinho, and J. R. D. Lé-pine, Astron. and Astrophys. 389, 871 (2002).

    Article  ADS  Google Scholar 

  20. A. V. Loktin and M. E. Popova, Astrophysical Bulletin 72, 257 (2017).

    Article  ADS  Google Scholar 

  21. C. Soubiran, T. Cantat-Gaudin, M. Romero-Gómez, L. Casamiquela, C. Jordi, A. Vallenari, and R. Sordo, Astron. and Astrophys. 619, A155 (2018).

    Article  Google Scholar 

  22. J. Borissova, R. Kurtev, N. Amarinho, J. Alonso-Garcia, S. Ramírez Alegría, S. Bernal, and D. Minniti, Monthly Not. Roy. Astron. Soc. 499, 3522 (2020).

    Article  ADS  Google Scholar 

  23. R. K. Bhatia, Publ. Astron. Soc. Jap. 42, 757 (1990).

    ADS  Google Scholar 

  24. K. Grasha, D. Calzetti, A. Adamo, H. Kim, B. G. Elmegreen, D. A. Gouliermis, and A. Wofford, Astrophys. J. 815, 93 (2015).

    Article  ADS  Google Scholar 

  25. M. R. de Oliveira, E. Bica, and H. Dottori, Monthly Not. Roy. Astron. Soc. 311, 589 (2000).

    Article  ADS  Google Scholar 

  26. Y. Tarricq, C. Soubiran, L. Casamiquela, T. Cantat-Gaudin, L. Chemin, F. Anders, and D. Bossini, Astron. and Astrophys. 647, A19 (2021).

    Article  Google Scholar 

  27. E. Paunzen and M. Netopil, Monthly Not. Roy. Astron. Soc. 371, 1641 (2006).

    Article  ADS  Google Scholar 

  28. E. V. Glushkova, M. V. Zabolotskikh, A. S. Rastorguev, I. M. Uglova, and A. A. Fedorova, Astron. Lett. 23, 71 (1997).

    ADS  Google Scholar 

  29. A. V. Loktin and N. V. Matkin, Astron. and Astrophys. Trans. 4, 153 (1994).

    Article  ADS  Google Scholar 

  30. J. Ahumada and E. Lapasset, Astron. and Astrophys. Supp. Ser. 109, 375 (1995).

    ADS  Google Scholar 

  31. A. K. Dambis, Astron. Lett. 25, 10 (1999).

    ADS  Google Scholar 

  32. F. de Marchi, F. de Angeli, G. Piotto, G. Carraro, and M. B. Davies, Astron. and Astrophys. 459, 489 (2006).

    Article  ADS  Google Scholar 

  33. S. van den Bergh, Astron. J. 131, 1559 (2006).

    Article  ADS  Google Scholar 

  34. J. A. Ahumada and E. Lapasset, Astron. and Astrophys. 463, 789 (2007).

    Article  ADS  Google Scholar 

  35. C. D. Garmany, J. W. Glaspey, G. A. Bragança, S. Daflon, M. B. Fernandes, M. S. Oey, and K. Cunha, Astron. J. 150, 41 (2015).

    Article  ADS  Google Scholar 

  36. R. de La Fuente Marcos, and C. de La Fuente Marcos, Astrophys. J. 719, 104 (2010).

    Article  ADS  Google Scholar 

  37. E. E. Giorgi, G. R. Solivella, G. I. Perren, and R. A. Vazquez, New Astron. 40, 87 (2015).

    Article  ADS  Google Scholar 

  38. D. A. Kovaleva, M. Ishchenko, E. Postnikova, P. Berczik, A. E. Piskunov, N. V. Kharchenko, and A. Just, Astron. and Astrophys. 642, L4 (2020).

    Article  ADS  Google Scholar 

  39. A. E. Piskunov, N. V. Kharchenko, S. Röser, E. Schilbach, and R. D. Scholz, Astron. and Astrophys. 445, 545 (2006).

    Article  ADS  Google Scholar 

  40. L. Lindegren, J. Hernández, A. Bombrun, S. Klioner, U. Bastian, M. Ramos-Lerate, and A. Vecchiato, Astron. and Astrophys. 616, A2 (2018).

    Article  Google Scholar 

  41. V. S. Avedisova, Astron. Rep. 46, 193 (2002).

    Article  ADS  Google Scholar 

  42. N. V. Kharchenko, A. E. Piskunov, S. Röser, E. Schilbach, and R. D. Scholz, Astron. and Astrophys. 438, 1163 (2005).

    Article  ADS  Google Scholar 

  43. E. V. Glushkova, S. E. Koposov, I. Y. Zolotukhin, Y. V. Beletsky, A. D. Vlasov, and S. I. Leonova, Astron. Lett. 36, 75 (2010).

    Article  ADS  Google Scholar 

  44. A. S. Buckner and D. Froebrich, Monthly Not. Roy. Astron. Soc. 444, 290 (2014).

    Article  ADS  Google Scholar 

  45. S. S. Larsen, Astron. and Astrophys. 416, 537 (2004).

    Article  ADS  Google Scholar 

  46. D. Hatzidimitriou and R. K. Bhatia, Astron. and Astrophys. 230, 11 (1990).

    ADS  Google Scholar 

  47. A. Dieball, H. Müller, and E. K. Grebel, Astron. and Astrophys. 391, 547 (2002).

    Article  ADS  Google Scholar 

  48. R. de la Fuente Marcos and C. de la Fuente Marcos, Astrophys. J. 700, 436 (2009).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This research made extensive use of the SI-MBAD database, and the VizieR catalogue access tool, operated at the CDS, Strasbourg, France (doi: 10.26093/cds/vizier), and of NASA Astrophysics Data System Bibliographic Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Casado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casado, J. The List of Possible Double and Multiple Open Clusters between Galactic Longitudes 240° and 270°. Astron. Rep. 65, 755–775 (2021). https://doi.org/10.1134/S1063772921350018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921350018

Keywords:

Navigation