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Abstract––We have developed a model for the time delay of pulse arrival between stations on the Moon and
Earth. Comparison of the lunar and terrestrial time scales is proposed to be carried out by comparing the
arrival time moments of giant pulses from pulsars. A method for such a comparison has been developed based
on the cross-correlation analysis of the received pulses. Using the example of giant pulses from the pulsar PSR
0531+21, we showed that the error of comparing scales in the case of a high signal-to-noise ratio reaches a
sub-discrete level and, thus, is determined by the reception band of the recording equipment.
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1. INTRODUCTION
The problem of comparison and synchronization

with high accuracy of time scales spaced over long dis-
tances has been and remains relevant to the present
day. On the Earth scale, this problem is solved with the
help of an operating satellite navigation system
GLONASS, using VLBI methods. At cosmic dis-
tances beyond the orbit of the Moon, it is proposed to
use a comparison and synchronization of time scales
using giant pulses (GP) of a pulsar. This method was
proposed in [1].

Giant pulses from pulsars are not suitable for tim-
ing and creating time scales, since their appearance
inside a pulsar pulse is random, but giant pulses have a
very short duration, as a rule, determined by the fre-
quency bandwidth of the recorder, their amplitude
and repetition interval are unique in a given time inter-
val, and they have a very high spectral radiation den-
sity, in a pulse 4–6 orders of magnitude higher than
the average value. Such properties make it possible to
use antennas with a relatively small effective area for
their registration, which can be deployed on other
bodies of the Solar System.

The exploration of the Moon is a priority task for
space agencies in many countries, both because of the
independent value of the Moon, for example, in terms
of mining, and because of the development of space
technologies for f lights to more distant bodies of the
Solar System. In this regard, comparison of time
scales is one of the most important parts of radio tech-
nical support for interplanetary navigation, communi-
cations, and the propagation of precise time signals.

The potential accuracy of comparing time scales using
GP is estimated to be <1 ns (see below), which is com-
parable to the accuracy of comparisons using a Global
Navigation Satellite Systems (GNSS) on the Earth.

The main purpose of this paper is to demonstrate
the capabilities of the GP time scale synchronization
technology using the example of comparing the lunar
and terrestrial time scales. For this purpose, in the
paper we developed a model of the delay between sta-
tions on the Moon and the Earth, presented an algo-
rithm for comparing scales by giant impulses based on
their cross-correlation, and gave an estimate of the
accuracy of comparing scales.

2. PROPERTIES OF GIANT PULSES
AND PECULIARITIES OF THEIR 

OBSERVATIONS
Let us single out separately the pulsars emitting

giant radio pulses, the peak f lux density of which can
exceed the peak f lux density of average pulses from
several tens to hundreds of thousands of times. The
main properties of GP are [2–4]:

• anomalously high peak radio f lux density (for the
pulsar in the Crab Nebula B0531+21 at frequencies of
600–1400 MHz—up to several million Jansky;

• short duration (from several nanoseconds to sev-
eral microseconds);

• power law of distribution by peak f lux den-
sity/pulse energy;

• high directivity of radiation, which follows from
the narrow longitudinal localization of the GP; and
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• high degree of GP polarization.
The total number of known pulsars with GP is 16

[5], including 11 normal and 5 millisecond pulsars,
including the “classical” representatives: the pulsar in
the Crab Nebula B0531+21 (P = 33 ms) and the single
millisecond pulsar B1937+21 (P = 1.56 ms), as well as
a number of pulsars observed only at low frequencies
and having a peak f lux density of up to several hundred
Jansky.

The individual pulses of the pulsar PSR 0531+21 in
the Crab Nebula consist entirely of short (ordinary
and giant) pulses. The distribution of their amplitudes
corresponds to a power law. The frequency of the
appearance of especially powerful GPs of this pulsar
was estimated as a result of its long-term observations
with the RT-64 radio telescope in Kalyazin at frequen-
cies of 600 MHz and 4.85 GHz. At a frequency of
600 MHz, 6–8 GPs with a peak f lux density >300 kJy
were recorded for an hour, at a frequency of 4.85 GHz,
2–3 GPs were recorded with a f lux >10 kJy [6]. The
shortest GP duration was recorded with the Arecibo
radio telescope at a frequency of 9.25 GHz in the
2.5 GHz band from the pulsar 0531+21 in the Crab
Nebula [2]. The width of the most powerful detail of
the pulse microstructure was 0.4 ns, and the peak f lux
density was 2.2 MJy. Note that the observed micro-
structure detail is not resolved and its width is limited
by the sampling rate (inverse to the frequency band) of
the receiving system. That is, in this case, when cor-
relating the GP taken at different points, we use the
VLBI method, devoid of its main drawback—period
uncertainty. In addition, there is no need to transmit
the entire array of observation data over a long interval
to the processing center from the spacecraft; it is
enough to transmit data at the interval of the GP
appearance, which reduces the amount of transmitted
data by orders of magnitude. In the case of observa-
tions of the pulsar GP in the 400 MHz range with a
50 MHz recording bandwidth, the accuracy of com-
paring the time scales by the pulsar GP will be better
than 10 ns. If we accept a very conservative estimate of
the signal-to-noise ratio of ~10, then the synchroni-
zation error will be on the order of 1 ns. If the pre-
detector method of compensating for the dispersive
pulse delay in the interstellar medium is implemented
on board the spacecraft, the volume of data transmit-
ted from the spacecraft in a communication session
can be limited to 20 Mb.

3. MODEL OF THE TIME DELAY
BETWEEN OBSERVERS ON THE MOON

AND EARTH

The binding of two time scales is based on measur-
ing the difference in the arrival time of short pulses rel-
ative to these scales. As already mentioned, in the role
of short duration pulses, it was earlier proposed in [1]
to use giant pulses from pulsars. The power of these
ASTRONOMY REPORTS  Vol. 65  No. 11  2021
pulses is such that they can be recorded by antennas of
a relatively small area.

For the correct binding of the scales, it is necessary
to develop a delay model that will accurately calculate
the propagation time between two receiving antennas
located on the Moon and Earth. The delay is calcu-
lated in several stages (see Fig. 1):

(1) The vector of the mass center of the Earth–
Moon system is calculated relative to the barycenter of
the Solar System  at the required time moment t.
For this, modern planetary ephemeris EMP2XXX
(Institute of Applied Astronomy, Russian Academy of
Sciences) or DE4XX (JPL) are used. The procedure
for calculating the coordinates of the Earth–Moon
barycenter is called with the parameter NPL = 3.

(2) The position of the Moon relative to the geo-
center  is calculated. This is also done using
ephemeris with NPL = 11.

(3) With the calculated components of the vectors
 and , the vectors  and  are cal-

culated using the following formulas:

where and  are the masses of the Moon and the
Earth, respectively.

(4) The vector of the observer position on the
Moon  is determined through rotations by the
libration angles, which, in turn, are also calculated
from the ephemeris with the parameter NPL = 13.

where x, y, and z are the coordinates of the radio tele-
scope on the lunar surface in the selenocentric coordi-
nate system defined relative to the principal axes of
inertia of the Moon; , , and  are the libra-
tion angles; and  and  are the rotation matrices
around the x and z axes, respectively.

(5) The vector of the observer’s position on the
Earth  is calculated through a series of successive
rotations of the observer’s vector in the ITRF system,
considering the daily rotation of the Earth, precession,
nutation and motion of the pole:

where , , and  are the coordinates of an Earth
observer in the ITRF system; P and N are the preces-
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Fig. 1. Mutual geometry of the location of observers on the Moon and Earth. On the left side of the figure, the Moon L and the
Earth T are conventionally depicted. The dashed circle shows the position of the Earth at time t1. By the time t2, when the signal,
passing from the Moon, reaches the Earth, it will change position, which is shown by the solid circle. The oblique lines show the
direction of arrival of the pulse from the pulsar.  is the barycentric unit vector in the direction of the pulsar. B is the barycenter
of the Solar System, G is the center of mass of the Earth–Moon system, T is the geocenter, L is the center of mass of the Moon,
O is the observer on Earth, and R is the observer on the Moon.
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sion and nutation matrices; , , and  are the
rotation matrices around the x, y, and z axes; ,  are
the coordinates of the Earth’s pole; and θ is the side-
real time.

(6) Barycentric vectors of observers  and  are
calculated as the corresponding sums

(7) The time of signal propagation along the direc-
tion to the pulsar is calculated (Röhmer’s delay):

where  is the barycentric radius vector of the observer
(  or ),  is the barycentric unit vector in the
direction on the pulsar, and c is the speed of light.

(8) The signal delay caused by the finite distance to
the pulsar is calculated using the formula:

where  is the barycentric radius vector of the observer
(  or ), R is the distance to the pulsar,  is the
barycentric unit vector in the direction of the pulsar,
and c is the speed of light.
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(9) The relativistic correction of signal propagation
in the gravitational field of bodies of the Solar System
is calculated according to the following formula:

where  is the barycentric unit vector in the direction
of the pulsar,  is the vector “observer–gravitating
body” (in our case, these are large planets of the Solar
System), and  is the gravitational radius of the
pth planet, which is calculated by the formula

. The plot of the relativistic correction is

shown in Fig. 2.
(10) The difference between the moments of arrival

of an impulse to observers on the Earth and the Moon
 is calculated by the final formula

where the time moments t1 an t2 are expressed in the
time scale TB. The plot of the delay model is shown in
Fig. 3.

This completes the algorithm for calculating the
difference in the arrival times of the pulsar pulse to the
observer on the Earth and the Moon.
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Fig. 2. Model of the differential gravitational delay between the Earth and the Moon (“The Earth minus the Moon”). Variations
are visible with a period of one year and with the period of the Moon’s revolution. 
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Fig. 3. Model of the “Earth–Moon” delay. 
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There are a few things to note when using this algo-
rithm:

(1) There is no correction for signal propagation in
the interstellar medium. This is due to the fact that
when calculating the difference between the moments
ASTRONOMY REPORTS  Vol. 65  No. 11  2021
of arrival of pulses between the Earth and the Moon,
these delays are effectively canceled out, since when
calculating these delays, the signal propagation path
can be considered the same with sufficient accuracy.
The only ionized medium between the Earth and the
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Fig. 4. The difference in the course of the time scales on the Earth and the Moon. 
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Moon is the Earth’s ionosphere, which introduces an
additional delay at the 400–1400 MHz observational
frequencies of the order of 2–50 ns, which is well
within the accuracy of the pulsar timing method. If the
measurement accuracy increases in the future, it will
not be difficult to calculate the ionospheric correction
through the delay at the zenith and considering the
oblique path of signal propagation between observers
on the Moon and Earth.

(2) It is necessary to consider the different course
of the time scales on the Earth and the Moon. In this
case, you can follow the same approach as in the TT
and TB scales: make the average rate the same, and the
difference will be only in the periodic terms. The plot
of the mutual motion of the TT scale on the Earth and
the scale on the Moon is shown in Fig. 4.

(3) To take into account the light interval (the
propagation time of the signal between the Moon and
the Earth), the iteration method is used. The process
converges very quickly. In practice, one iteration is
sufficient.

4. MODELING THE BINDING OF TWO TIME 
SCALES USING GIANT PULSES 

OF THE PULSAR PSR 0531+21

To carry out the simulation, we used the observa-
tions of the pulsar in the Crab Nebula on January 2,
2018 and February 2, 2018. The observations were car-
ried out with the BSA antenna of the Lebedev Physical
Institute at a frequency of 111 MHz in a 2.5 MHz band
with a temporal resolution of 2.4576 ms. The 6 second
files were recorded as shown in Fig. 5.
In [7], the most optimal frequency for observations
of pulsars 400–500 MHz was substantiated. To trans-
late observations from 111 to 500 MHz, we use the fol-
lowing considerations. With a frequency of 111 MHz,
pulses from the pulsar PSR B0531+21 show a notice-
able exponential scattering, and the scattering in the
propagation medium changes with a frequency as .
Then, to scale this effect, it is enough to change the
time scale by (500/111)4 = 412 times. Thus, the new
sampling interval will be approximately 6 μs. This will
not change the shape of the pulse, but it will change its
characteristic width. In the future, it will be conve-
nient to operate precisely with discretes, and lead to
units of time at the end of calculations.

To simulate observations of the same pulse by the
second antenna on the Moon, the original pulses were
shifted by the amount determined by the delay model,
and Gaussian white noise with an amplitude equiva-
lent to the resulting signal-to-noise ratio = 3 and 10
was superimposed on them. Many factors affect the
S/N ratio. Here, we will assume that it primarily
depends on the effective area of the antenna. In the
case of a phased array similar to BSA, to obtain the
aforementioned S/N ratios, the antenna on the Moon
should consist of 1.5 or 5 thousand dipoles.   

When determining the magnitude of the discrep-
ancy between the scales, the procedure of cross-cor-
relation of pulses was used, followed by smoothing
with an exponential pattern (Fig. 7) and inscribing a
4th degree polynomial into the maximum of the cross-
correlation function. It is this procedure that makes it
possible to determine the position of the maximum at
the sub-discrete level. Cross-correlation functions are

−4f
ASTRONOMY REPORTS  Vol. 65  No. 11  2021
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Fig. 5. Giant pulse of the pulsar PSR B0531+21. Observations on January 2, 2018 at 20:11:50.954 (UTC+3). 
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shown in Fig. 8, and polynomial fitting is shown in
Fig. 9.

The results of measuring the binding of time scales
are summarized in Table 1, which concludes that the
method works even with a relatively weak signal from
the Moon (S/N = 3), since the main signal recorded
on Earth confidently “stretches out” the maximum of
the cross-correlation function. Let us add that the for-
mal error in measuring the shift does not strongly
depend on the signal-to-noise ratio, since the top of
the cross-correlation function still remains smooth
and is well described by a polynomial, which cannot
be said about the actual shift. As expected, it differs
ASTRONOMY REPORTS  Vol. 65  No. 11  2021

Table 1. The magnitude of the discrepancy between the two 
received on the Moon, different shift and different width of th
rate = 6.160618 μs

Pulse Model, s Observ., s Differe

02.01.2018 –1.0211252 –1.0211247 0.
02.02.2018 –0.5640922 –0.5640902 1.
02.01.2018 –1.0211252 –1.0211281 –2.
02.02.2018 –0.5640922 –0.5640951 –2.
02.01.2018 –1.0211252 –1.0211236 4.
02.02.2018 –0.5640922 –0.5640830 9.
02.01.2018 –1.0211252 –1.0211040 21.1
02.02.2018 –0.5640922 –0.5641035 11.2
more from the model one when the signal-to-noise
ratio deteriorates.

Now let us consider the effect of the frequency
channel width on the accuracy of measuring the pulse
position and, accordingly, measuring the binding of
two scales. Let us give the formula for pulse broaden-
ing with the measure of dispersion DM in the band 
[Hz] at the frequency f [Hz]:

(1)

With the used parameters f  = 500 MHz, B = 2.5 MHz,
the number of channels = 512 we obtain 

Δf

−ΔΔ = − = × 16
3

2 , 2.410331 10 .DM ft k
kf

Δ =f
scales, measured at different signal-to-noise ratio of the pulse
e frequency channels. Values are in microseconds and discrete

nce, μs Accuracy, μs Signal-to-noise Channel width,
Hz

480 0.474 10 4873
926 0.762 10 4873
880 0.294 3 4873
52 0.912 3 4873
392 0.024 10 53600
216 0.066 10 53600
80 0.048 3 53600
92 0.090 3 53600
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Fig. 6. Giant pulse of the pulsar PSR B0531+21. Observations on February 2, 2018 at 18:09:58.0769 (UTC+3). 
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4873 Hz. Substituting these values into formula (1),
we obtain the broadening value of 18 μs, which is equal
to 3 discretes.

Furthermore, the simulation was carried out for a
channel width of 53.6 kHz. From the point of view of
mathematics, the use of a wider frequency channel,
leading to pulse broadening, is equivalent to convolu-
tion of the total pulse  with a rectangular core, the
width of which is equal to the broadening inside the
channel

In the discrete case, the 53.6 kHz channel width is
equivalent to a rectangular window with a wide of
11 counts. Convolution with a window of this width
was applied to the original pulse.

Also, in the calculations, we used two values of the
signal-to-noise ratio = 3 and 10. The results of this
part of the simulation are shown in the bottom four
lines of the Table 1. It is clearly seen from them that
the broadening of the pulse leads to a deterioration in
the accuracy of determining the position of the maxi-
mum of the cross-correlation function, and the differ-
ence from the actual shift of the scales can reach sev-
eral counts. The situation is expectedly aggravated if
one of the pulses has a low S/N value.

Once again, we specially note that the formal error
of fitting the polynomial weakly depends on the S/N
and broadening in the channel. Moreover, for wide

τ( )x

∞

−∞

= Π − τ τ τ( ) ( ) ( ) .y t t x d
pulses, the maximum of the cross-correlation function
becomes smoother, and this even leads to a decrease in
the formal inscribing error. Thus, for realistic esti-
mates of accuracy, it is necessary to use the value of the
actual deviation of the maximum from the position
preset in the simulation.

5. CONCLUSIONS
The delay model is based on the difference between

the coordinates of the lunar and terrestrial points in
the barycentric frame of reference, considering the
effects of signal propagation in the gravitational field
of the Solar System and the curvature of the front. The
model error is estimated at ~30 ns. The mutual course
of the lunar and terrestrial time scales was calculated
by numerical integration. It is shown that the ampli-
tude of variations after subtracting the secular term is
~150 μs. The size of the variations is such that they
must be taken into account when synchronizing the
scales.

The results of modeling the accuracy of the binding
of the two scales fit into the expected ones. The pulse
sampling rate should correspond to the pulse broaden-
ing in the channel. When the S/N of one of the pulses
deteriorates, the method continues to work, because
another pulse with a high S/N ratio “pulls out” the cor-
relation function, in which the position of the maxi-
mum is determined with sub-discrete accuracy. In units
of time, with a sampling rate of 6 μs and S/N > 10, the
scale synchronization accuracy reaches ~0.5 μs.
ASTRONOMY REPORTS  Vol. 65  No. 11  2021
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Fig. 7. Double exponential pattern for smoothing the cross-correlation function. The exponent is matched to the pulses of the
pulsar PSR B0531+21. 
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The situation worsens significantly if equipment
with wide frequency channels is used, in which the
pulse broadening is equal to several discretes. In this
case, the comparison accuracy drops by more than an
order of magnitude to ~20 μs.

When using high frequencies (several gigahertz)
and wide bands (several hundred megahertz), the
potential accuracy of the synchronization of scales
using the proposed method reaches a subnanosecond
level at intervals of more than a day, which makes it
possible to compare time scales on the bodies of the
Solar System at the most modern level of accuracy.
Due to the irregular and relatively rare GP tracking,
the proposed method, in our opinion, is not suitable
for consumers who need real-time coordinates and/or
scale labels. It is better for them to use purely radio-
technical methods.
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