Skip to main content
Log in

Comparative Analysis of the Propagation Conditions of Millimeter Radio Waves at Radio Astronomy Polygons in Russia and Uzbekistan

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The feasibility of expanding the evaluation parameters was discussed when selecting the “Karadag” test site for the installation of millimeter-wave antennas based on the following: a comparative analysis of the data on the integral atmosphere moisture content in the time interval from August 2019 to January 2020 for the NIRFI NNSU “Karadag” test site, three IAA RAS test sites (“Zelenchukskaya”, “Svetloe”, and “Badary”) and the construction site of the 70-m radio telescope on the “Suffa” plateau (Uzbekistan) (average values for 1981–1991). This is due to the absence of places in the Russian Federation territory with consistently good atmospheric transparency in the millimeter-wave range, comparable to the Chahnantor plateau in Chile. Using the monthly average values of the integral moisture content as the main criterion for choosing a test site, one should consider both the characteristic of the wind rose at the “Karadag” test site and a more detailed daily and intraday distribution of moisture content. At the “Karadag” test site, even in summer, high transparency of the atmosphere periodically appears. Integral moisture content decreases to levels comparable to this parameter in the Suffa mountain area. The results obtained make it possible to correct the current principles for the placement of astronomical instruments and space communication systems of the millimeter and submillimeter-wave ranges in the territory of the Russian Federation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Free registration on the website is required to obtain data [5].

  2. rp5.ru

REFERENCES

  1. R. P. Bystrov, A. V. Petrov, and A. V. Sokolov, Zh. Radioelektron., No. 5, 3 (2000).

  2. G. B. Sholomitskii, I. A. Maslov, and V. M. Grozdilov, Sov. Astron. 26, 358 (1982).

    ADS  Google Scholar 

  3. A. V. Lapinov, S. A. Lapinova, L. Yu. Petrov, and D. Ferrusca, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, Proc. SPIE 11453, 114532 (2020).

    Google Scholar 

  4. I. T. Bubukin, I. V. Rakut’, M. I. Agafonov, A. L. Pankratov, A. V. Troitskii, V. A. Lapchenko, R. V. Gorbunov, I. I. Zinchenko, V. I. Nosov, and V. F. Vdovin, J. Exp. Theor. Phys. 129, 35 (2019).

    Article  ADS  Google Scholar 

  5. https://cddis.nasa.gov/Data_and_Derived_Products/CDDIS_Archive_Access.html.

  6. http://asc-lebedev.ru/index.php?dep=16\&suffa=3.

  7. V. E. Panchuk and V. L. Afanas’ev, Astrophys. Bull. 66, 233 (2011).

    Article  ADS  Google Scholar 

  8. https://wui.cmsaf.eu/safira/action/viewHome.

  9. M. M. Beskaravainyi, N. S. Kostenko, L. P. Mironova, L. Ya. Partyka, V. N. Golubev, V. M. Zubarovskii, and A. M. Peklo, The Nature of Karadag (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  10. A. V. Zuev, V. Yu. Letukhova, and E. A. Zueva, Tr. Karad. Nauch. Stants. im. T.I. Vyazemskogo—Prir. Zapoved. RAN 13, 77 (2020).

    Google Scholar 

  11. S. D. Snegirev, V. M. Fridman, and O. A. Sheiner, The First Radiophysical Institute in the Country (From Its Foundation to the Present Day) (FGBNU NIRFI, Nizhnii Novgorod, 2016) [in Russian].

    Google Scholar 

  12. I. T. Bubukin, M. I. Agafonov, I. V. Rakut’, A. L. Pankratov, A. A. Yablokov, A. V. Troitskii, A. S. Priimak, and R. V. Gorbunov, Radiophys. Quantum Electron. 62, 562 (2019).

    Article  ADS  Google Scholar 

  13. V. M. Ivanova, V. N. Kalinina, L. A. Neshumova, and I. O. Reshetnikova, Mathematical Statistics (Vysshaya Shkola, Moscow, 1981) [in Russian].

    Google Scholar 

  14. V. Yu. Katkov, J. Commun. Technol. Electron. 42, 1344 (1997).

    Google Scholar 

  15. P. W. Rosenkranz, J. Quant. Spectrosc. Rad. Transfer 39, 287 (1988).

    Article  ADS  Google Scholar 

  16. G. M. Bubnov, Yu. N. Artemenko, V. F. Vdovin, D. B. Danilevskii, et al., Radiophys. Quantum Electron. 59, 763 (2017).

    Article  ADS  Google Scholar 

  17. http://iaaras.ru/quasar/wvr/.

  18. G. N. Ilyin and A. V. Troitskii, Radiophys. Quantum Electron. 60, 291 (2017).

    Article  ADS  Google Scholar 

  19. M. Bevis, S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, J. Geophys. Res. Atmosph. 97 (D14), 15787 (1992).

    Article  ADS  Google Scholar 

  20. J. L. Davis, T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered, Radio Sci. 20, 1593 (1985).

    Article  ADS  Google Scholar 

  21. G. S. Kurbasova and A. E. Vol’vach, Nauka Vchera, Segodnya, Zavtra, No. 4, 79 (2016).

    Google Scholar 

  22. https://www.iram-institute.org/.

  23. P. R. Jewell, ASP Conf. Ser. 278, 313 (2002).

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (projects within the framework of the base part of the State Assignment of NNSU 0729-2020-0057, and IPM RAS 0035-2014-0206, as well as IBSS 0556-2019-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Bubukin.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bubukin, I.T., Rakut, I.V., Agafonov, M.I. et al. Comparative Analysis of the Propagation Conditions of Millimeter Radio Waves at Radio Astronomy Polygons in Russia and Uzbekistan. Astron. Rep. 65, 598–614 (2021). https://doi.org/10.1134/S1063772921080011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921080011

Keywords:

Navigation