Skip to main content
Log in

Structure of the H2O Maser in NGC 2071 IRS 1 from Observations on the Ground-Space Radio Interferometer RadioAstron

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The observational data of an H2О maser at a frequency of 22.2280 GHz in the dark reflection nebula NGC 2071 in the direction of the infrared object IRS 1 at the target coordinates RA(2000) = \({{05}^{{\text{h}}}}{{47}^{{\text{m}}}}04_{.}^{{\text{s}}}758\), DEC(2000) = \(00{}^\circ 21' 42_{.}^{'' }700\) have been processed as part of the scientific program of the ground-space interferometer RadioAstron. The duration of the session on January 11, 2014 was 70 min. The space radio telescope (SRT-10) and three radio telescopes of the ground-based network took part in the observations: RT-32 (Medicina, Italy), RT-32 (Toruń, Poland), and RT-64 (Kalyazin, Russia). The following parameters were implemented: angular resolution 70 μs at the ground-space baseline with maximum baseline projections 3.1 ED (\( \sim {\kern 1pt} 40{\kern 1pt} {\kern 1pt} 000\) km); synthesized beam of the ground-based part of the interferometer \(0.006'' \times 0.0006'' \) (PA = –23°); spectral resolution 7.81 kHz (i.e., 0.11 km/s). A map of the distribution of maser spots with 13 spatial components was obtained. The map has a size \( \sim {\kern 1pt} 100 \times 100\) mas (milliarcseconds), which corresponds to \( \sim 40 \times 40\) AU at a distance of 390 pc to the nebula. The range of the line-of-sight velocities of the components is 4.7–20.5 km/s with a width of spectral features 0.2–0.6 km/s; the density of the correlated flux at the line maximum varies from \( \sim {\kern 1pt} 4\) to \( \sim {\kern 1pt} 29\) Jy. There was recorded one spatial component (with a radial velocity of 14.3 km/s) for which there was a correlation at the ground-space baselines SRT–Tr and SRT–Mc at an ultrahigh angular resolution with a reliability level above 6σ. Based on the analysis of the dependence of the visibility function on the baseline projections, a two-component model is proposed for the spatial structure of this component with the angular dimensions of the extended and compact constituents 4 mas and 0.06 mas, i.e., 1.56 AU (with an uncertainty of 10%) and 0.023 AU (with an uncertainty of 50%), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. http://www.asc.rssi.ru/radioastron/index.html

  2. http://www.asc.rssi.ru/radioastron/news/newsl/ru/newsl_36_ru.pdf

  3. https://link.springer.com/content/pdf/10.1134/S0038094612070143.pdf

  4. https://www.evn.com.vn/

  5. http://asc-lebedev.ru/index.php?dep=6&page=5

  6. http://www.aips.nrao.edu

  7. http://www.asc.rssi.ru/shaddow/IMAGE1_NGC2071_180-260_512.jpg

  8. https://www.iram.fr/IRAMFR/GILDAS/

  9. http://astrogeo.org/pima/

  10. https://www.originlab.com/

  11. http://www.asc.rssi.ru/shaddow/IMAGE2_Seth-map_with_2014.jpg

  12. http://www.asc.rssi.ru/shaddow/IMAGE3_Tsutsumi_with_2014.jpg

REFERENCES

  1. M. Walmsley, in Fragmentation of Molecular Clouds and Star Formation, Ed. by E. Falgarone, F. Boulanger, and G. Duvert, Proc. IAU Symp. 147, 161 (1991).

  2. R. Cesaroni, E. Churchwell, P. Hofner, C. M. Walmsley, and S. Kurtz, Astron. Astrophys. 288, 903 (1994).

    ADS  Google Scholar 

  3. S. Kurtz, Rev. Mex. Astron. Astrofis. 9, 166 (2000).

    Google Scholar 

  4. F. H. Shu, F. C. Adams, and S. Lizano, Ann. Rev. Astron. Astrophys. 25, 23 (1987).

    Article  ADS  Google Scholar 

  5. E. A. Bergin and M. Tafalla, Ann. Rev. Astron. Astrophys. 45, 339 (2007).

    Article  ADS  Google Scholar 

  6. C. F. McKee and E. C. Ostriker, Ann. Rev. Astron. Astrophys. 45, 565 (2007).

    Article  ADS  Google Scholar 

  7. H. Zinnecker and H. W. Yorke, Ann. Rev. Astron. Astrophys. 45, 481 (2007).

    Article  ADS  Google Scholar 

  8. R. Bachiller, Ann. Rev. Astron. Astrophys. 34, 111 (1996).

    Article  ADS  Google Scholar 

  9. G. Duvert, S. Guilloteau, F. Ménard, M. Simon, and A. Dutrey, Astron. Astrophys. 355, 165 (2000).

    ADS  Google Scholar 

  10. N. J. Evans II, M. M. Dunham, J. K. Jørgensen, M. L. Enoch, et al., Astrophys. J. Suppl. 181, 321 (2009).

    Article  Google Scholar 

  11. T. Alonso-Albi, A. Fuente, R. Bachiller, R. Neri, P. Planesas, L. Testi, O. Berné, and C. Joblin, Astron. Astrophys. 497, 117 (2009).

    Article  ADS  Google Scholar 

  12. N. Crimier, C. Ceccarelli, T. Alonso-Albi, A. Fuente, et al., Astron. Astrophys. 516, A102 (2010).

    Article  Google Scholar 

  13. H. M. de Villiers, A. Chrysostomou, M. A. Thompson, S. P. Ellingsen, et al., Mon. Not. R. Astron. Soc. 444, 566 (2014).

    Article  ADS  Google Scholar 

  14. S. Kurtz, in Massive Star Birth: A Crossroads of Astrophysics, Ed. by R. Cesaroni, M. Felli, E. Churchwell, and M. Walmsley, Proc. IAU Symp. 227, 111 (2005).

  15. S. Kurtz, in The Young Massive Star Environment, Ed. by C. Lis, A. Blake, and E. Herbst, Proc. IAU Symp. 231, 47 (2005).

  16. M. Reiter, Y. L. Shirley, J. Wu, C. Brogan, A. Wootten, and K. Tatematsu, Astrophys. J. Suppl. 195, 1 (2011).

    Article  Google Scholar 

  17. J. Bally, N. Cunningham, N. Moeckel, and N. Smith, in Massive Star Birth: A Crossroads of Astrophysics, Ed. by R. Cesaroni, M. Felli, E. Churchwell, and M. Walmsley, Proc. IAU Symp. 227, 12 (2005).

  18. D. Shepherd, in Massive Star Birth: A Crossroads of Astrophysics, Ed. by R. Cesaroni, M. Felli, E. Churchwell, and M. Walmsley, Proc. IAU Symp. 227, 237 (2005).

  19. F. Palla, in Massive Star Birth: A Crossroads of Astrophysics, Ed. by R. Cesaroni, M. Felli, E. Churchwell, and M. Walmsley Proc. IAU Symp. 227, 196 (2005).

  20. K.-T. Kim and S. E. Kurtz, Astrophys. J. 643, 978 (2006).

    Article  ADS  Google Scholar 

  21. P. Andre, D. Ward-Thompson, and M. Barsony, in Protostars and Planets IV, Ed. by V. Mannings, A. P. Boss, and S. S. Russell (Univ. Arizona Press, Tucson, 2000), p. 59.

  22. S. Kurtz, J. Korean Astron. Soc. 37, 265 (2004).

    Article  ADS  Google Scholar 

  23. R. Cesaroni, in Massive Star Birth: A Crossroads of Astrophysics, Ed. by R. Cesaroni, M. Felli, E. Churchwell, and M. Walmsley, Proc. IAU Symp. 227, 59 (2005).

  24. S. P. Ellingsen, M. A. Voronkov, D. M. Cragg, A. M. Sobolev, S. L. Breen, and P. D. Godfrey, in Astrophysical Masers and their Environments, Ed. by J. M. Chapman and W. A. Baan, Proc. IAU Symp 242, 213 (2007).

  25. S. P. Ellingsen, S. L. Breen, M. A. Voronkov, J. L. Caswell, X. Chen, and A. Titmarsh, arXiv: 1210.2139 [astro-ph.GA] (2012).

  26. S. L. Breen and S. P. Ellingsen, Proc. IAU Symp. 8, 156 (2012).

  27. D. A. Varshalovich, in The Physics of Cosmos, 2nd ed. (Sov. Entsiklopediya, Moscow, 1986), p. 376 [in Russian].

    Google Scholar 

  28. D. Hollenbach, M. Elitzur, and C. F. McKee, Astrophys. J. 773, 70 (2013).

    Article  ADS  Google Scholar 

  29. K. M. Menten, M. J. Reid, P. Pratap, J. M. Moran, and T. L. Wilson, Astrophys. J. 401, L39 (1992).

    Article  ADS  Google Scholar 

  30. L. Kogan and V. Slysh, Astrophys. J. 497, 800 (1998).

    Article  ADS  Google Scholar 

  31. H. Beuther, A. Walsh, P. Schilke, T. K. Sridharan, K. M. Menten, and F. Wyrowski, Astron. Astrophys. 390, 289 (2002).

    Article  ADS  Google Scholar 

  32. T. J. T. Moore, R. J. Cohen, and C. M. Mountain, Mon. Not. R. Astron. Soc. 231, 887 (1988).

    Article  ADS  Google Scholar 

  33. V. I. Slysh, A. M. Dzura, I. E. Val’tts, and E. Gerard, Astron. Astrophys. Suppl. Ser. 106, 87 (1994).

    ADS  Google Scholar 

  34. V. I. Slysh, A. M. Dzura, I. E. Val’tts, and E. Gerard, Astron. Astrophys. Suppl. Ser. 124, 85 (1997).

    Article  ADS  Google Scholar 

  35. W. Batrla, H. E. Matthews, K. M. Menten, and C. M. Walmsley, Nature (London, U.K.) 326, 49 (1987).

    Article  ADS  Google Scholar 

  36. M. K. Menten, ASP Conf. Ser. 16, 119 (1991).

  37. M. Felli, J. Brand, R. Cesaroni, C. Codella, et al., Astron. Astrophys. 476, 373 (2007).

    Article  ADS  Google Scholar 

  38. E. E. Lekht, V. A. Munitsyn, A. M. Tolmachev, and V. V. Krasnov, Astron. Rep. 55, 857 (2011).

    Article  ADS  Google Scholar 

  39. V. Migenes, S. Horiuchi, V. I. Slysh, I. E. Val’tts, et al., Astrophys. J. Suppl. 123, 487 (1999).

    Article  Google Scholar 

  40. O. S. Bayandina, R. A. Burns, S. E. Kurtz, N. N. Shakhvorostova, and I. E. Val’tts, Astrophys. J. 884, 140 (2019).

    Article  ADS  Google Scholar 

  41. R. J. Parker, Mon. Not. R. Astron. Soc. 476, 617 (2018).

    Article  ADS  Google Scholar 

  42. T. A. van Kempen, C. McCoey, S. Tisi, D. Johnstone, and M. Fich, Astron. Astrophys. 569, A53 (2014).

    Article  ADS  Google Scholar 

  43. R. L. Snell and J. Bally, Astrophys. J. 303, 683 (1986).

    Article  ADS  Google Scholar 

  44. M. A. Trinidad, T. Rodríguez, and L. F. Rodríguez, Astrophys. J. 706, 244 (2009).

    Article  ADS  Google Scholar 

  45. C. Carrasco-González, M. Osorio, G. Anglada, P. D’Alessio, L. F. Rodríguez, J. F. Gómez, and J. M. Torrelles, Astrophys. J. 746, 71 (2012).

    Article  ADS  Google Scholar 

  46. A. C. Seth, L. J. Greenhill, and B. P. Holder, Astrophys. J. 581, 325 (2002).

    Article  ADS  Google Scholar 

  47. J. M. Torrelles, J. F. Góomez, L. F. Rodríguez, S. Curiel, G. Anglada, and P. T. P. Ho, Astrophys. J. 505, 756 (1998).

    Article  ADS  Google Scholar 

  48. B. J. Anthony-Twarog, Astron. J. 87, 1213 (1982).

    Article  ADS  Google Scholar 

  49. N. S. Kardashev, V. V. Khartov, V. V. Abramov, V. Yu. Avdeev, et al., Astron. Rep. 57, 153 (2013).

    Article  ADS  Google Scholar 

  50. W. Baan, A. Alakoz, T. An, S. Ellingsen, et al., in Astrophysical Masers: Unlocking the Mysteries of the Universe, Proc. IAU Symp. 336, 422 (2018).

  51. J. N. Douglas, F. N. Bash, F. A. Bozyan, G. W. Torrence and C. Wolfe, Astron. J. 111, 1945 (1996).

    Article  ADS  Google Scholar 

  52. S. Likhachev, V. Kostenko, I. Girin, A. Andrianov, V. Jarov, and A. Rudnitskiy, J. Astron. Instrum. 6, 1750004 (2017).

    Article  Google Scholar 

  53. A. S. Andrianov, I. A. Girin, V. E. Zharov, V. I. Kostenko, S. F. Likhachev, and M. V. Shatskaya, Vestn. FGUP NPO Lavochkina 3(24), 55 (2014).

    Google Scholar 

  54. M. A. Shchurov, V. Yu. Avdeev, I. A. Girin, V. I. Kostenko, S. F. Likhachev, V. A. Lodigin, A. G. Rudnitskiy and A. R. Shaykhutdinov, Bull. Lebedev Phys. Inst. 46, 133 (2019).

    Article  ADS  Google Scholar 

  55. A. S. Andrianov, Cand. Sci. Dissertation (Lebedev Phys. Inst. RAS, Moscow, 2017).

  56. L. Kogan, in Astronomical Data Analysis Software and Systems V, Ed. by G. H. Jacoby and J. Barnes, ASP Conf. Ser. 101, 175 (1996).

    Google Scholar 

  57. L. Petrov, Y. Y. Kovalev, E. B. Fomalont, and D. Gordon, Astron. J. 142, 35 (2011).

    Article  ADS  Google Scholar 

  58. N. Shakhvorostova, A. Sobolev, J. Moran, A. Alakoz, H. Imai, and V. Avdeev, Adv. Space Res. 65, 772 (2020).

    Article  ADS  Google Scholar 

  59. Y. Y. Kovalev, N. S. Kardashev, K. V. Sokolovsky, and P. A. Voitsik, Adv. Space Res. 65, 705 (2020).

    Article  ADS  Google Scholar 

  60. M. Kang, J.-E. Lee, M. Choi, Y. Choi, K.-T. Kim, J. Francesco, and Y.-S. Park, Astrophys. J. Suppl. 209, 25 (2013).

    Article  Google Scholar 

  61. D. Tsutsumi, A. Ohama, K. Okawa, M. Kohno, et al., https://arxiv.org/pdf/1706.05664v1.pdf (2017).

  62. S. Fujita, D. Tsutsumi, A. Ohama, A. Habe, et al., Publ. Astron. Soc. Jpn. 73, S273 (2021).

    Article  Google Scholar 

  63. T. Omodaka, T. Maeda, M. Miyoshi, A. Okudaira, et al., Publ. Astron. Soc. Jpn. 51, 333 (1999).

    Article  ADS  Google Scholar 

  64. N. T. Ashimbaeva, P. Colom, V. V. Krasnov, E. E. Lekht, M. I. Pashchenko, G. M. Rudnitskii, and A. M. Tolmachev, Astron. Rep. 64, 586 (2020).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The RadioAstron project is carried out by the Astro Space Center of the Lebedev Physical Institute of the Russian Academy of Sciences and the Lavochkin Research and Production Association under a contract with the State Corporation ROSCOSMOS together with many scientific and technical organizations in Russia and other countries.

This study used the observations at the radio telescope in Medicina, at the Radio Astronomy Observatory of the National Institute for Astrophysics INAF (Italy).

This study is partly based on the observations made with the 32-m radio telescope (Tr) in Toruń (Toruń Astronomy Center of the Nicolaus Copernicus University, Poland) with the support of a grant from the Polish Ministry of Science and Higher Education.

The authors are grateful to the staff of the Kalyazin radio telescope (Special Design Bureau of the Moscow Power Engineering Institute, Moscow, Russia) for the high quality of the observations.

We are grateful to A.V. Alakoz (ASC LPI) and O.S. Bayandina (JIVE) for helpful discussions and advice on the processing of the scientific data obtained in the RadioAstron project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Shchurov, I. E. Val’tts or N. N. Shakhvorostova.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchurov, M.A., Val’tts, I.E. & Shakhvorostova, N.N. Structure of the H2O Maser in NGC 2071 IRS 1 from Observations on the Ground-Space Radio Interferometer RadioAstron. Astron. Rep. 65, 552–568 (2021). https://doi.org/10.1134/S1063772921070052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921070052

Keywords:

Navigation