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Abstract—In 1964, Ya.B. Zeldovich formulated the problem of light propagation in the Universe under the
influence of inhomogeneities. It is reduced to describing the divergence of two close geodesics in a Rieman-
nian space and is described by the geodesic deviation equation (Jacobi equation) with the curvature along the
geodesic line varying randomly. Assuming the curvature to be constant on segments of small but finite length,
the problem is reduced to studying the product of random matrices and makes it possible to apply the appro-
priate well-developed mathematical theory, which, however, did not allow calculating the mean-square
growth rate of the geodesic deviation. In our paper, we propose a way to solve this problem by introducing a
bilinear quantity, one component of which coincides with the square of the Jacobi field. The system of first-
order differential equations for the bilinear quantity is explicitly written out, and the solution, same as the
growth rate, is again expressed through the product of matrices. Such a technique can be used in the study of
a wide range of problems and is naturally generalized to higher-order moments.

DOI: 10.1134/S1063772921050073

1. INTRODUCTION

Back in 1964, Zeldovich drew attention to the fact
that light in the Universe propagates in such a way that
an observer measuring angular distances between
objects by means of standard cosmological tests
obtains a curvature of space slightly less than the cur-
vature corresponding to the average density of the
Universe [1]. In particular, if the average density of the
world is exactly equal to the critical density, the
observer should come to the conclusion that the Uni-
verse is open. At a critical density, the spatial section is
f lat; at a lower density, it has a negative curvature. In a
space of zero curvature, the distance between close
geodesics increases linearly with the lengths of geode-
sics, while in a space of negative curvature it grows
exponentially. This phenomenon arises from the col-
lective effect of small spatial curvature inhomogene-
ities. The observer should notice this phenomenon, if
the observation conditions allow the difference
between linear and exponential growth to be detected.
The physical effect itself is fully acknowledged by
modern cosmology and is mentioned in various con-
texts in studies on gravitational lensing; however,
quantitatively, it is rather small due to the fact that the
density f luctuations are minor and the density is close
to critical [2].

The effect noted by Zeldovich is geometric in
nature and is reduced to the problem of geodesic

divergence in a Riemannian space, the curvature of
which along the geodesic can be considered a random
process (see [3] for more details). The nature of this
effect is not related to the four-dimensionality of
space-time and the presence of the time coordinate.
Since we do not plan to examine direct cosmological
consequences of Zeldovich’s concepts (they are
exhausted in his paper) in this study, we are talking
simply about the geodesic divergence on a curved two-
dimensional Riemannian space. It should be noted
that the original work was written by Zeldovich before
the formation of modern physics of random media, so
he solved the problem using a very specific technique.
For its solution by modern regular methods, see [3].

The growth rate of the distance between geodesic
lines (geodesic deviation) can be defined in various
terms. In random media, we can talk about the Lya-
punov exponent (selective growth rate) and the growth
rates of the normalized statistical moments of geodesic
deviation. In his paper, Zeldovich suggested that these
growth rates should not coincide; the growth rate of
the statistical moments should exceed the Lyapunov
exponent, and the higher moments should increase
faster than the lower ones.

Over time, it was realized that Zeldovich’s problem
is a convenient model example for studying the devel-
opment of various instabilities in a random media, and
the ratio of the growth rates of various characteristics
of geodesic deviation noted by Zeldovich is a manifes-
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tation of the general property of the instability devel-
opment in random media, which eventually became
known as intermittency [4].

In his study, Zeldovich arrived at correct answers
using reasoning that did not require explicit calcula-
tion of the growth rates. Under certain assumptions
about curvature properties as a random process (see
below for more details), it is possible to calculate the
Lyapunov exponent using the mathematical theory of
the product of random matrices; however, these meth-
ods do not allow calculating the mean-square growth
rate and the growth rate of the highest moments [5]. It
was possible only in the model of curvature f luctua-
tions in the form of white noise [6]. This model of
specifying a random curvature-defining process is
poorly compatible with the concept of the properties
of gravitational forces, and it is desirable to be replaced
with more physical assumptions. This is the content of
the present study.

In his study, Zeldovich expressed a number of
fruitful thoughts, which are only partly related to the
idea that is of interest to us. They were developed in
subsequent years by a number of authors, including
Zeldovich himself (see, e.g., [7–10]). Although a
detailed review of the modern scientific perception of
Zeldovich’s ideas would certainly be of interest, this is
not the aim of our study.

2. BASIC EQUATIONS
One of the important technical discoveries in Zel-

dovich’s work was the realization that the phenome-
non under study can be reduced to the behavior of
geodesics in a two-dimensional Riemannian space
spanned by the projection of two close light rays onto
a spatial section of the cosmological model, and the
results should be rescaled for a non-stationary multi-
dimensional cosmological model.

Let us consider two geodesics in a two-dimensional
Riemannian space, intersecting at one point; the angle

 between the geodesics at the intersection point is
considered a small value. Let us mark the distance 
(in the metric of a Riemannian manifold) on both
geodesics in the same direction from the point of their
intersection. The distance (in the same metric)
between the obtained points in the first approximation
with respect to  is , where the  value is known in
Riemannian geometry as the Jacobi field (in physics

 is known as the geodesic deviation). It turns out
(see, e.g., [11]) that the Jacobi field satisfies the
equation

(1)

which is called the Jacobi equation. Here, the deriva-
tives are taken with respect to the variable , and  is
the Gaussian curvature of the manifold, the only non-
zero component of the four-dimensional Riemann
tensor, which is considered a random process. Assum-
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ing that the points move along the geodesics at a con-
stant speed, the distance  can also be understood as
the time over which the points travel a given distance;
thus, we are dealing with the evolution of the  value
in a random medium . We assume that the random
process  is arranged as follows. On each segment of
the form  (these are called update
intervals), the curvature of  does not depend on 
and is considered a random variable with zero mean
value and finite variance ; on different segments,
these random variables are statistically independent
and equally distributed (for example, according to the
Gaussian law). This model of a stochastic process is
called an update model. Other assumptions about the
structure of the random process  are also possible,
and they can be studied by such methods as well (see,
e.g., [12, 13]). The proposed method does not require
a special type of statistical distribution of curvature. In
order to obtain a specific result, it is necessary to set
some specific distribution, as shown below.

To solve Eq. (1), it is necessary to set the initial
conditions. We will assume that , .

Let us rewrite Eq. (1) as a system of first-order
equations by introducing a two-dimensional vector ,
the first coordinate of which is  and the second
coordinate is  (the constant factor  equal to
the length of the update interval is introduced to
match the dimensions of the vector  components).
Then, in the matrix form

Naturally, vector  is also a (vector) random pro-
cess.

3. EQUATION FOR THE CORRELATION 
TENSOR

Let us now construct the correlation tensor for the
random process . To do this, we introduce the two-
index tensor

(2)

whose mean value (calculated from the  distribu-
tion) is the correlation tensor. Differentiating the
product  and using (2), it is easy to show that

 satisfies the equation

(3)

where the tensor components  are
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At each update interval, Eq. (3) is an equation with
constant coefficients, so its solution is the value of the
tensor  at the point  multiplied by the exponent

from tensor , which we denote by , since it is,
of course, a fourth-rank tensor as well. We have to sup-
plement this tensor with the subscript , which indi-
cates the update interval at which the calculation was
performed. Naturally, the specific values of the tensor
depend on the interval number and are random.

Now, we can average Eq. (3). First, let us do this for
the first interval . It is sufficient to calculate
the mean value of the tensor , which is calculated
component by component.

Since the  values are replaced by independent
values at the ends of the update intervals, we can carry
out the same calculation sequentially at the next
update intervals; the mean value of the tensor  does
not depend on  since the  distributions are the same
at different update intervals.

For the convenience of further reasoning, we will
renumber the variables. Let us introduce an auxiliary
four-dimensional quantity  with components

, , , and , respectively.
The quantity  satisfies the equation

where

The solution to this equation at each update interval is
expressed through the matrix . There-
fore, the evolution of the averaged value  is
expressed through the matrix . Moving from one
update interval to another,  approaches the eigen-
vector of the matrix  corresponding to the highest
eigenvalue, which, in turn, determines the growth rate
of the  components. Since the mean value of the

component  is equal to the mean value of ,
the highest eigenvalue of the matrix  also deter-
mines the growth rate of the second moment of the
Jacobi field.

4. CALCULATION OF THE EIGENVALUE

First, let us find the explicit form of the matrix
 using the definition of the matrix expo-

nent. Due to the simple structure of the matrix 
itself, its degrees are written out explicitly. The form of
the matrix  depends on the sign of . For conve-
nience, we temporarily introduce the dimensionless
curvature . Then at , we have

(4)

and at k < 0 the matrix  looks as
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Note that it would be sufficient to write out only one
matrix, for example, for ; the form of the second
matrix for negative  would then follow from the rela-
tions  and .

Let us further show how in the case of small , we
can obtain approximate estimates for the eigenvalues
of the matrix . The exact answer will depend on the
distribution of the  value. Our goal will be to obtain
a series expansion of the eigenvalues in powers of .

Let us start with a simple case in which the matrix
 is calculated explicitly. To do this, we assume that

 takes only two values, , with equal probability.
Then,  is the half-sum of matrices (4) and (5), and
an explicit characteristic equation can be written out.

The coefficients consist of combinations of 

and cosh . We will write out the result of their
expansion in powers of . The approximate character-
istic equation accurate to the terms of the order of 
has the form

(6)

Below, we will explain why it is more correct to view
the resulting expansion as a series in powers of  and
not . For now, we will deal with the solution of
Eq. (6). It is easy to see that one of the roots is .
The remaining cubic equation has the form

(7)

Let , then (7) will take the form

A standard replacement of variables λ = y + 
allows us to bring the cubic equation to the canonical
form (note that all the transformations are now per-
formed with accuracy to ):

Another standard replacement , known
as Vieta substitution, with accuracy up to  leads to the
equation
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The roots of the last equation are expressed easily;
considering all the replacements, we can write out the
solutions of (7):

(8)

where . The highest eigenvalue  is
what determines the growth of the solutions of the
extended system (3).

Note that it was possible to arrive at Eq. (6) in a
slightly different way, which is applicable for a wider
class of  distributions. The idea is to replace the
mathematical expectation of a function of a random
variable with the mathematical expectation of the first
few terms of its Taylor series. The question of the accu-
racy of such an approximation is rather complicated,
since it is necessary to consider not only the local
behavior of the function near the expansion point, but
also the character of the growth of the random variable
moments. In our situation, the issue is simplified,
since we consider the product of a random variable
and a small parameter . Then, with accuracy to the
terms of the order of  for an arbitrary sufficiently
smooth function in a neighborhood of zero  and
symmetric  distribution, we can write

(9)

Using this approximation to calculate the elements of
the matrix  and considering the fact that the first
moment for a symmetric  distribution is zero, we
arrive exactly at expression (6), in which σ2 = DK =

. Note that the following refining corrections in
(9) contain the moments of the random variable  of
higher orders, which are generally not expressed in
terms of its variance . For this reason, (6) is gener-
ally not an expansion in powers of .

Thus, only in the first approximation for a sym-
metric  distribution, the highest eigenvalue of the
matrix  is determined by only two parameters, the
variance of the  distribution and the length of the
update interval .

It remains to explicitly recalculate the highest
eigenvalue in terms of the growth rate of the second
statistical moment of the Jacobi field (1).
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5. RELATIONSHIP OF THE EIGENVALUE
AND GROWTH RATE

Recall (see [4]) that the growth rate of the th sta-
tistical moment is the value

(10)

where  is the number of the statistical moment, and
the growth rate  is normalized to the moment num-
ber  in the denominator of Eq. (10) to make the
results comparable for moments of different orders.

The highest eigenvalue  found in (8) character-
izes the growth of the mean square of the Jacobi field

 in construction. Specifically, this means that the
value  increases by  times at a distance of 
update intervals. On the other hand, according to the
definition of the growth rate (10), the same change will
be written as . Hence, the relation between
the eigenvalue and the growth rate of the second
moment:

Substituting the expression for  from (8), with accu-
racy to terms of the order of , we obtain

(11)

Note that proceeding to expansion (11), it is necessary
to consider the limited region of convergence of the
series for the logarithm, hence, the restrictions on the
possible values of the product . The numerical
estimates show that the condition  should
be fulfilled for the logarithm expansion formula to be
valid.

Of course, we assume that the highest eigenvalue of
our matrix and the mean-square growth rate for more
complex distributions are calculated numerically.

To demonstrate the agreement of the estimates
with the numerical experiment, we consider three
families of  distributions: Bernoulli with values ,
uniform on the interval , , and Gaussian
with zero mean and variance . The distribution
parameters are selected so that the variance of  is
exactly . Furthermore, we will consider , 1,
and 10, and the  values running the interval from 
to 10. For each  and , we will simulate  realiza-
tions of the random variable , numerically estimate
the matrix , and find its highest eigenvalue. The
results will be plotted on the graphs of the highest
eigenvalue versus the  value and compared with the
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approximation obtained in (8). Figure 1 shows that the
results for small  are nearly identical and closely
agree with the approximation; for large  values, a dis-
crepancy appears, since the higher moments of the 
distribution start to prevail.

Finally, Fig. 2 shows the dependence of the growth
rate on the length of the update interval  for different
variances of the  distribution. Note that at small ,
the growth rate is determined by the first term

. The  value at which the expansion of the
logarithm loses accuracy approximately coincides
with the  value at which the approximation accuracy
for the eigenvalues is lost (see Fig. 1). Apparently, a
good approximation for small values of the product

 is .
Note one particular case when  and  is uni-

formly distributed on the interval  considered
earlier in [5]. For it, we obtain the approximate value
of the mathematical expectation of the matrix ,

and the highest eigenvalue  (formula (8) also
gives a close value ). In terms of the growth
rate, we obtain . Note that the value found in
[5] for the Lyapunov exponent  turns out,
as it should, to be smaller than the growth rate of the
highest moment . It should also be noted that the
direct application of formula (11) gives an overesti-
mated value . This is due to the fact that this
case lies outside the limits of applicability regarding
the expansion of the logarithm.

6. RESULTS AND DISCUSSION
We have demonstrated how to calculate the mean-

square growth rate of the geodesic deviation in the
Zeldovich problem. The difficulty of the calculation
consists in the fact that we are interested in a quadratic
quantity (the square of the geodesic deviation), for
which it was previously not possible to obtain a linear
equation. We solve this issue by introducing a bilinear
quantity (second-order tensor), one component of
which is the square of the geodesic deviation. This
technique is widely used in the theory of turbulence.
For example, in the study of the magnetic energy evo-
lution in a f low of a conductive f luid, it is unclear how
to obtain an equation for this quadratic quantity, but it
is possible to construct an equation for the correlation
tensor of the magnetic field [14].

The technique we use is in no way limited to the
specific form of the geodesic deviation equation, but is
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Fig. 1. Dependence of the highest eigenvalue on the length of the update interval for some types of distributions in comparison
with the approximation. The axes are shown in a logarithmic scale. 
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Fig. 2. Growth rate dependences of the second moment of the Jacobi field on the length of the update interval and the variance

of the curvature parameter (σ = 10, 1, 0.1, and 0.01, from top to bottom, respectively). The axes are shown in a logarithmic scale.

The dashed lines are located in the region beyond the limits of applicability of the logarithm expansion ( ). 
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applicable to the transfer of an arbitrary physical
quantity described by a system of ordinary linear dif-
ferential equations with random coefficients. Many
problems that study the development of instabilities in
random media by means of a transition to the
Lagrangian reference frame are reduced to such equa-
tions (see, e.g., [4]).

With the help of this technique, it is also possible to
study the growth of statistical moments of a higher
order. For example, to study the growth rate of the
fourth degree of geodesic deviation, it will be
necessary to introduce the fourth-order tensor

. Naturally, this will require consider-

ation of matrices of a higher order and will make the
calculations more cumbersome, but will not funda-
mentally change their nature.

With regard to the prospects for the application of
the results and the entire body of knowledge about the
Zeldovich effect, we note once again that at the stages
of the evolution of the Universe close to us in time, this
effect is quantitatively very small. In principle, it is
possible that the combined action of multiple celestial
bodies located near one line of sight, which individu-
ally do not lead to gravitational lensing, can collec-
tively cause the occurrence of a gravitational lens. To
estimate the probability of the occurrence of such a
lens, one must be able to calculate various moments of
the Jacobi field. However, this line of research does
not appear particularly promising. The Zeldovich
effect seems much more important for the study of the
earliest Universe, since it clearly says that the influ-

=ijkl i j k lZ z z z z
ence of inhomogeneities blurs the concept of critical
density for the cosmological model and makes one
think how to correctly formulate the Einstein equa-
tions for f luctuating space-time. It seems that the
problem formulated by Zeldovich successfully isolates
a fragment of this large problem; this fragment can be
researched without consistent mathematical elabora-
tion of the concept of a pseudo-Riemannian manifold
with a random metric and, at the same time, indicates
a possible direction of the fundamental development
of general relativity. The authors hope to make a feasi-
ble contribution to this development in the future.
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