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Abstract—Laser Doppler vibrometry is actively used in experimental studies because of its noncontact mea-
surement technique. When using a stationary laser to measure the vibrations of rotating bodies and Fourier
transform to process the results of such measurements, a problem arises, associated with a decrease in the fre-
quency resolution of the spectra with increasing rotation rate of the body. As a result, at sufficiently high rota-
tion rates, closely spaced discrete components may cease to be resolved. This paper proposes a method for
solving such a problem using the least squares method. The operability of this processing method has been
demonstrated on experimental data.
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INTRODUCTION
Measuring the vibrations of bodies outside of the

lab, but in operating conditions, has always been of
great interest. To a large extent, this applies to measur-
ing the vibrations of rotating objects. The noncontact
measurement principle underlying laser Doppler
vibrometry makes it possible to study the vibrations of
bodies without changing their dynamic characteristics
(resonance frequencies, vibration modes at reso-
nances, quality factors). In studying the vibrations of
rotating objects using laser vibrometers, globally, there
are two approaches: systems that allow the laser beam
to follow a specific point of the object [1–4] without
such systems (a stationary beam is used) [5–10]. The
most common tracking systems consist of two types.
In the first type, laser tracking of a point is provided by
an additional device, a derotator, the operating princi-
ple of which uses a rotating Dove prism [1–3]. The
optical properties of the Dove prism consist in the fact
that for half a revolution around its axis, it rotates the
image of an object by 360°. If the prism is rotated at half
the rotation rate of the studied object, then its image for
the vibrometer will become stationary and, thus, it
becomes possible to continuously track a selected point.
In this case, the derotator requires an external commu-
nication channel with the studied body in order to
obtain information about the rotation rate.

The second type of systems jointly use a laser
vibrometer and video camera in tandem with an image
processing algorithm in real time [4, 11]. In such sys-
tems, light enters the chamber and the vibrometer
through a common system of mirrors. During opera-

tion, the camera tracks the position of some target
(measuring point) on the surface of the object. The
image processing algorithm evaluates the instanta-
neous difference in the position of the target and the
laser beam. This information is then used to correct
the position of the laser beam via a system of mirrors.
This ensures continuous tracking of the point. Track-
ing systems of both types make it possible to sequen-
tially measure vibrations in a set of points, which even-
tually makes it possible to construct the vibration
shapes of a rotating body.

Another approach is measurement without track-
ing systems for a specific point. In this case, the rotat-
ing object passes through the fixed beam of the laser
vibrometer. Although this approach is more primitive,
it nevertheless has a number of advantages. First, it is
applicable in the case when the rotating part (disk,
screw, propeller) is covered by a casing or guides that
prevent continuous movement of the beam behind the
point [5, 7–9]. In such a situation, measurements are
performed with a stationary laser directed at a point
accessible for viewing. Second, a fixed-beam measur-
ing system is simpler and more affordable, obviating
the high price of tracking systems, as well as the signif-
icant difficulty involved in their tuning [8–10].
Clearly, expanding the possibilities of using systems
with a fixed laser is an urgent task.

Paper [5] describes an experimental setup for mea-
suring the vibration of rotating bodies with a stationary
laser, demonstrating the possibility of determining the
oscillation amplitude and frequency using this
approach. The main disadvantage of this measure-
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Fig. 1. (a) Experimental setup with fixed steel plate and (b) measurement results in form of spectra for different rotation rates. 

Frequency, Hz

0 200 400 600 800 1000

V
ib

ra
ti

o
n

a
l 

v
e
lo

c
it

y,
 d

B
 r

e
l 

1
 m

/
s

�100

�90

�80

�70

�60

�50 (b)(а)

22 rpm

10 rpm

55 rpm
ment method is the decrease in frequency resolution
with increasing rotation rate. This article paper
describes a method to overcome this shortcoming.

FORMULATION OF THE PROBLEM

When measuring the vibrations of a rotating object,
such as propeller blades, the scan time will be deter-
mined by the time the blade crosses the beam. This
time is determined by the width of the blade and its
linear speed at the scan point. As a result of measure-
ments, a temporal implementation is recorded, con-
sisting of a set of short pulses with a high duty cycle.
When using the Fourier transform to estimate the
vibration spectrum of such a signal, a large number of
false discrete components are obtained (the present
components multiply in the periodic spectrum). In
order to avoid this result, one pulse can be processed.
Figure 1 shows the measured object considered in the
study: a steel plate, which was rotated by a machine
tool. From the results of measurements with a fixed
plate, it is known that there are two closely spaced dis-
crete components due to its bending vibrations, 91.3
and 110.8 Hz.

Figure 1 also shows the spectra obtained from the
experimental data (using a single pulse) and plotted for
three rotation rates of the propeller model: red curve,
10 rpm; blue curve, 22 rpm; purple curve, 55 rpm. All
curves show the maxima associated with bending
vibrations of the model blade. For a rotation rate of
55 rpm, it is seen that the first and second discrete com-
ponents are no longer resolved. This is due to a decrease
in the duration of the observation time and correspond-
ing deterioration of the frequency resolution.

It is noteworthy that Fourier transform is the opti-
mal processing method for frequency estimation of a
single discrete component in Gaussian white noise.
So-called “superresolving” methods are used to esti-
mate two closely spaced components. The best known
are methods employing autoregressive models and the
MUSIC method [12]. Note, however, that in the pres-
ence of two sinusoids, the method based on the least
squares method (LSM), which explicitly includes two
sinusoids with unknown parameters in the signal
model, is optimal.

METHOD FOR PROCESSING
THE MEASUREMENT RESULTS

The result processing method is based on repre-
sentation of the recorded signal model as a sum of
several (two) deterministic signals with unknown
parameters [13].

Let us consider the following model of a measured
time signal:

(1)

where , ,  are column vectors of dimension J × 1,
 is the useful deterministic signal,  is the vector of

unknown parameters to be estimated,  is Gaussian
white noise with zero mean, and J is the number of
time samplings. The deterministic signal can be mod-
eled as the sum K of complex sinusoids:

(2)

where  are column vectors with dimension K × 1,
 are the unknown complex amplitudes,  are the

unknown frequencies,  is a time corresponding to
sampling number j. Expression (2) can be rewritten in
compact matrix form:
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Fig. 2. (a) Objective function calculated by formula (6); (b) comparison of time samplings of measured, filtered, and model signal
after approximation. 
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unknown parameters in accordance with the LSM, we
minimize the function

(4)

over the unknown parameters. In order to find the
minimum over the unknown complex amplitudes

(over the vector ), it is necessary to write the extre-

mum condition . After differentiating with

respect to vector , we obtain the equation

. Its solution will be the estimate
of the unknown complex amplitudes:

(5)

as functions of the unknown frequencies . Since this
is the only solution and the maximum is infinite and
unattainable, it can only be a minimum. Substituting
(5) into (4), we obtain the objective function to be

maximized, which depends on :

(6)

For the case K = 2, function (6) depends on two
unknown frequencies. It is not possible to find the
maximum over them using the necessary extremum
condition, since the resulting equation has a complex
nonlinear form. In addition, such an equation has
many solutions corresponding to many local maxima.
The only reliable way to find the global maximum (6)
is an exhaustive search. After determining the frequen-

cies of the sinusoids  it is also possible to estimate their

complex amplitudes by substituting  in formula (5).

RESULTS OF TESTING THE METHOD 
ON EXPERIMENTAL DATA AND WITH 

NUMERICAL SIMULATION

Figure 2 shows the results of using the method to
resolve two adjacent frequencies when the sample is
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rotated at a rate of 55 rpm (see Fig. 1). The method
was applied to one pulse of the recorded time sam-
pling, which was preprocessed by a bandpass filter
with cutoff frequencies of 70 and 140 Hz. Then, the
dependence of objective function (6) on two frequen-
cies was calculated. This dependence is shown in
Fig. 2a in brightness form.

Due to the symmetry of this dependence, the value
of the arguments of any maximum can be considered
the frequency estimate. These values were 91.7 and
110.8 Hz, which practically coincides with the bending
frequencies determined for the fixed plate. Figure 2b
also compares the time samplings of the initial experi-
mental signal (blue line), the signal after filtering (red
line), and model signal consisting of the sum of two
sinusoids after approximation by the method
described in the paper (green line). Coincidence of the
levels of the initial and model signals in the considered
frequency range is observed.

It should be noted that for other pulses, the results
of frequency estimation may differ from the values
obtained for a stationary plate. Figure 3 shows the pro-
cessing results for such a pulse, which can condition-
ally be called bad.

The objective function for the bad pulse in Fig. 3.
differs from the function in Fig. 2 by the larger width
of the maximum. The estimated frequencies are 104
and 114.8 Hz, which differ significantly from those for
the fixed plate. The selected model signal still agrees
well with the experimental signal, just like in the case
of a good pulse (Fig. 3). Good agreement between the
model and experimental time samplings is preserved
even with a conscious choice of the objective function,
which does not correspond somewhat to the found
global maximum (in the dark red area). The argu-
ments in this case can differ significantly from each
other even with a small deviation of the objective func-
tion from the maximum.

Thus, when a bad pulse is chosen, a large error in
estimating the frequency values can result. To avoid
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Fig. 3. (a) Objective function calculated for bad pulse, (b) comparison of time samplings of measured, filtered, and model signal
after approximation. 
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this, one can try to average the estimation results over
several pulses. In this case, the frequency estimates
themselves, which are ranked in ascending order, were
Fig. 4. Dependence of frequency estimation error (with
respect to values determined for fixed plate) on number of
pulses used for averaging. 
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herent averaging is done. 
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averaged. In other words, the smaller argument of the
objective function maximum was taken as the estimate
of the lower frequency. Figure 4 shows the results of
such averaging. Here, the blue curve corresponds to
the first (lower) frequency, and the red curve, to the
second (higher).

For a time sampling with a duration of 80 s,
150 pulses were recorded, corresponding to passage of
one-half of the plate. The plots in Fig. 4 show that with
an increase in the number of pulses used for averaging,
the frequency estimation error decreases. With the
maximum possible number of averages, the estimated
frequencies were 91.4 and 110.8 Hz, which correspond
almost exactly to the frequencies measured on the
fixed plate.

The duration of the experimental signal (pulse) for a

rotation rate of 55 rpm was , which corre-

sponds to the classical resolution .

The question arises: up to how many revolutions can
the rotation rate be increased so that two sinusoids can
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still be resolved? To improve the frequency estimation

accuracy and resolution, additional incoherent aver-

aging of objective function (6) over the pulses can be

attempted. This processing method will be optimal

when each pulse has a random amplitude and initial

phase. In practice, this may not always be true, but one

can hope that incoherent averaging will still give some

positive effect. To elucidate the possibilities of this

method, numerical simulations were carried out. A set

of pulses was generated, each of which contained two

sinusoids with frequencies of 91.4 and 111 Hz and

complex amplitudes of –0.5511 + 0.7317i and 0.9370–

0.1947i. These amplitudes were obtained from the

experiment for one of the pulses using formula (5).

Each pulse was multiplied by a random Gaussian vari-

able with zero mean and unit variance (to introduce

incoherence). We also added Gaussian white noise

with zero mean and some variance. For each number

of generated pulses, the probability of a false alarm was

determined. This probability was used to determine

the detection/resolution threshold (according to the

Neumann–Pearson strategy). Then, the sum of the

signal and noise was used to determine the probability

of resolution of sinusoids when the threshold was

exceeded. Figure 5 shows the obtained dependences of

the probabilities of resolving the spectral components

on the signal-to-noise ratio (SNR) for a different

number of pulses over which incoherent averaging is

done. Results are given for two different pulse dura-

tions, T = 0.01375, 0.055 s.

Clearly, incoherent averaging can significantly

reduce the SNR required to resolve two sinusoids. It

turns out that even for very small durations of a single

pulse for a given signal model, incoherent averaging of

many pulses makes it possible to resolve close compo-

nents.

CONCLUSIONS

The article describes a method for overcoming the

main drawback to the method of measuring vibrations

of rotating bodies with a stationary laser: a decrease in

frequency resolution with increasing rotation rate. It is

shown that for the case of two adjacent spectral com-

ponents, the least squares method can be used using a

signal model that explicitly includes two sinusoids

with unknown frequencies. The efficiency of the

approach has been demonstrated on experimental

data. To increase the frequency estimation accuracy

and frequency resolution probability, the authors pro-

pose using incoherent averaging between pulses. The

efficiency of this method has been demonstrated using

numerical simulations.
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