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Abstract—An iterative algorithm to enhance the quality of optoacoustic images is proposed based on the Ban-
ach fixed point theorem. Numerical simulation of the propagation of ultrasound waves and image recon-
struction for media with characteristics close to soft biological tissues has been performed. The problem of
eliminating distortions and artifacts in optoacoustic images has been modeled for four iterative schemes. The
efficiency of the approach has been demonstrated even for a few iterations.
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INTRODUCTION
Noninvasive nondisturbing diagnostic tools such as

magnetic resonance and X-ray computed tomography
are currently widely used in scientific research and
clinical practice. The world scientific community
appreciated the great importance of these tools by
awarding their creators Nobel Prizes in physiology and
medicine. However, the hard fields and radiation used
in these tools are potentially hazardous to human
health, which severely limits their application. Optical
coherence tomography and optical diffusion tomogra-
phy have considerable potential in terms of safety and
obtaining reliable diagnostically meaningful informa-
tion. However, due to the strong absorption and scat-
tering of light waves in biological tissues, purely optical
methods can only be used to efficiently visualize struc-
tures only in subsurface domains. Therefore, one of
the most promising and safest trends in medical diag-
nostics is the approach that uses the optoacoustic
(OA) effect.

Optoacoustic imaging uses the phenomenon of
optical radiation absorption by inhomogeneities in a
biotissue, which results in its heating and subsequent
thermal expansion. The thermal expansion of optical
absorbers leads to generation of ultrasound waves,
which are detected by an array located on the surface
of a studied object. Since the propagation and forma-
tion characteristics of OA signals are determined by
the thermophysical, acoustic, and optical properties of
a medium, the relationship between these characteris-

tics makes it possible to use the detected ultrasound
signals to quantify the properties of a medium by solv-
ing the inverse problem of optoacoustics.

In addition to biomedical safety, an important
advantage of OA imaging is that this approach com-
bines the capabilities of high-contrast optical absorp-
tion and deep ultrasound penetration. In this case, the
quality of an image reconstructed from the ultrasound
signals detected on the tissue surface is mainly deter-
mined by an optoacoustic reconstruction algorithm.
Distortions and artifacts in a reconstructed image can
occur due to both the features of the reconstruction
method, and obstacles and noises of various natures
inevitable in practical studies. The OA images typi-
cally contain an intense non-stationary background
with artifacts similar to a pattern of useful signals, the
signal-to-noise ratio is usually low, and the digital
image is of low quality, and has a few digitizing levels,
specklelike pattern, and fuzzy boundaries. Therefore,
the problem of eliminating distortions and artifacts in
the reconstructed OA images is very relevant for the
efficient use of this method in clinical practice and sci-
entific research [1].

The aim of this work is to develop and test in silico
algorithms for eliminating distortions and artifacts
from reconstructed two- (2D) and three-dimensional
(3D) OA images. First, the direct and inverse OA
problems are formulated together with a description of
the proposed iterative algorithm for correcting recon-
structed OA images. The next section describes in
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Fig. 1. Scheme of OA sensing.
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more detail the algorithm, numerical experiment, and
the results of simulating the reconstruction of the 2D
and 3D OA images. In the Conclusions, the results
and prospects of the developed algorithm are pre-
sented.

ITERATIVE OPTOACOUSTIC 
RECONSTRUCTION ALGORITHM

Optoacoustic imaging is based on the effect of ther-
moelasticity, when optical radiation absorption by
inhomogeneities of a medium results in conversion of
optical energy into thermal. At a moderate density of
the released energy, no phase transformations occur in
the absorption region, and thermal optical absorption
results in the generation of ultrasound waves.

The direct problem of OA tomography is to deter-
mine the pressure field p(r, t) using the known distri-
bution of heat sources H(r, t) excited by a short light
(laser) pulse (r is the spatial coordinate of a point, t is
the time) (Fig. 1).

The spatiotemporal dependence p(r, t) being
sought in an acoustically homogeneous infinite
medium is determined by the following equation [2]:

(1)

where c is the ultrasound velocity, β is the isobaric
expansion coefficient, and cp the specific heat capacity
at constant pressure when the heat source H(r, t) is
presented as the product of the spatial distribution of
the absorbed energy and the time dependence of the
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laser intensity: H(r, t) = Q(r)·I(t); so for a short laser
pulse H(r, t) = Q(r)δ(t), where δ(t) is the Dirac delta
function.

The initial acoustic pressure occurred due to the
absorption of pulsed radiation by optical inhomogene-
ities at the time instant t = 0 can be expressed in the
form p0(r) = ΓQ(r), where Γ is the dimensionless Gru-
neisen parameter, which characterizes the efficiency
of the OA transformation of absorbed light into sound.

In this case, the solution of the direct problem is [2]

(2)

where V' is the volume containing the distributed OA
sources.

The inverse problem of optoacoustics is to recon-
struct the initial acoustic pressure p0(r, t = 0) = p0(r)
using the pressure signals ps(r, t) detected on surface S
of volume V' [3].

The algorithms for reconstructing the heat source
distribution in a medium can be divided into several
classes: the Fourier-domain algorithm, the time-
reversal algorithm, and the back-projection method
[4, 5].

The back-projection procedure [6] is the classical
method of the OA reconstruction. It can be imple-
mented either in the space–time domain or in the
Fourier domain for several detection modes in plane
[6], cylindrical [6], or spherical [7] geometries. In this
case, the solutions are valid only for a closed perfect
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surface (each surface point serves as a detector). In

addition, it is usually considered that the target object

is located in an infinitely homogeneous medium with-

out dispersion with a constant ultrasound velocity,

absorption coefficient and density.

In practice, these conditions are not fulfilled,

which leads to distortions of the reconstructed images.

The features of these distortions are different when

using different reconstruction methods, different

locations of detectors, and different geometries of a

reconstructed object.

To compensate distortions and overcome the

strong dependence of image quality on these factors,

we developed an iterative distortion reduction scheme for

OA images based on the Banach fixed point theorem.

Let

(3)

where x is the unknown input image, and f(⋅) is the
mapping (operator) that transforms input image x into
result y of the solution of the inverse problem of opto-
acoustics. In this case, the operator f(⋅) is the result of
the subsequent application of the operators f1(⋅) and
f2(⋅): f (⋅) = f2(f1(⋅)), where f1(⋅) is the operator that
determines the solution of the direct problem of opto-
acoustics (Eq. (2)), and f2(⋅) is an operator that deter-
mines the solution of the inverse problem.

According to the Banach fixed point theorem it is

known that if f is a contraction mapping of the set F ⊂
(M, ρ) into itself, (M, ρ) is a complete metric space,

and F is a closed set, then there exists, and moreover

exactly one, fixed point x* ∈ F of mapping f (if the

point is fixed, then f(x*) = x*).

In this case, contraction mapping means the fol-

lowing mapping f: F → F ⊂ (M, ρ), that ∃α ∈ [0,1):

ρ(f (x), f (y)) ≤ αρ(x,y), ∀x, y ∈ F.

In accordance with this definition, for the recon-

struction problem F = Rm×n is a digital image consisting

of m × n pixels (for the 2D case), and ρ(x, y) = ||x–y|| is

the Euclidean distance. It can be shown that F ⊂
(M,ρ) is a complete metric space, for which the Ban-

ach fixed point theorem is valid [8]. In this case, the

fixed point x* ∈ F can be found by the method of suc-

cessive approximations: xn = f(xn–1), where the zero

approximation x0 ∈ F is an arbitrary point of the met-

ric space.

Thus, a refined solution to the inverse problem of

optoacoustics can be obtained by forming a sequence

of images {Iq} such that Iq = R(Iq–1), where R(⋅) is an

operator defined by the mappings f1(⋅) and f2(⋅) and

transforming the original pressure distribution p0(r) to

its zero approximation . In other words, the
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solution of the inverse problem of optoacoustics p0(r)

is taken as the zero approximation, and occurring dis-

tortions are removed during an iterative process.

In the proposed approach, two algorithms of suc-

cessive approximations were tested: the algorithm

based on the Picard theorem [9] and the algorithm

proposed in [10] (formulas (4) and (5), respectively):

(4)

(5)

To quantify the quality of image restoration,

there were used such criteria as the signal-to-noise

ratio:  the relative error

 (here,  is the qth iteration of

the algorithm), and the structure similarity index

(SSIM), which characterizes the closeness of images X
and Y in terms of brightness, contrast, and pattern.

The structure similarity index is considered as an

unofficial standard for estimating image quality, when

a reference exists. In general, the value of SSIM(X,Y)

is determined by the formula

where x, y are the coordinates of a pixel,

 is the brightness functional,

 is the contrast functional,

 is the pattern functional, and μx,

μy, σx, σy, and σxy are the local mean values, standard

deviations, and the cross covariance for corresponding
images, respectively. The SSIM index takes values
from –1 to 1. The value 1 is obtained if the compared
images are equal [11].

Note that the implementation of the proposed iter-

ative scheme is possible in two modes. The first mode

is implemented using formulas (4) and (5). In the sec-

ond mode, the sequence of images {Iq} is formed by an

iterative process Iq = I(Iq-1), where I(⋅) is an operator

defined by the same mappings f1(⋅) and f2(⋅), but acting

in a different order, i.e. f(⋅) = f1(f2(⋅)). In this case, the

input image is not the pressure distribution 

reconstructed by solving the inverse problem, but the
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Fig. 2. Results of reconstruction of circular disk p0.
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pressure signals ps(r, t) detected on surface S of

scanned volume V�, i.e. I0 = ps(r, t). Here, we use for-

mulas similar to (4) and (5), but for the operators I1(⋅)

and I2(⋅), respectively.

The next section presents the results of testing both

iterative schemes.

TESTING OF AN ALGORITHM

The k-Wave software code operating in the MAT-

LAB toolbox was used for numerical simulation of the

problem of propagation of acoustic waves. It allows on

to model systems with acoustic sources and detectors

of arbitrary shapes and sizes. In this case, the numeri-

cal model is based on the transition to the k-space.

The spatial gradients in this space are calculated using

a fast Fourier transform scheme. The time gradients

are calculated using an adjusted k-space difference

scheme [12].

A numerical model was set close in its characteris-

tics to soft biological tissues: a homogeneous medium

with the density ρ0 = 1020 kg/m3 and ultrasound
velocity c0 = 1510 m/s. The problem was solved for 2D

and 3D cases.

In the 2D case, the numerical phantoms (objects

for the OA reconstruction) were a disk and a two-

dimensional model of the vascular tree; in the 3D

case, it was a three-dimensional numerical model of

the aorta with an aneurysm. The physical sizes of the

2D and 3D samples were 4.6 × 4.6 mm and 10.3 ×

10.3 × 5.3 mm, respectively. In the 2D case, detectors

were located linearly on the upper surface of a rectan-

gular sample; in the 3D case, detectors were distrib-

uted over the upper plane of a parallelepiped. The

back-projection algorithm with Fourier transform was

used to reconstruct the given objects.

Figure 2a shows the OA source p0(x, y) in the form

of a circular disk and the result of its reconstruction

implemented using the k-Wave algorithm is shown in

Fig. 2b. The shape of the reconstructed image is

mapped quite accurately. However, the image is aggra-

vated with arc artifacts touching the reconstructed

image; the intensity of the reconstructed image is

much lower than that of the original sample, and its

edges are diffused. This is especially noticeable in
ACOUSTICAL PHYSICS  Vol. 68  No. 4  2022
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Fig. 3. (а) Zero iteration  of disk image; (b, c) linear profiles of reconstructed images , and original image .
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Fig. 2d, where the given OA source p0(x, y) is shown in

an isometric projection (the source intensity is plotted

along the applicate axis). The reconstruction result is

shown in Fig. 2d in the foreground.

The two middle images  and  in Fig. 2d rep-

resent the fourth iteration of the scheme Iq = R2(Iq–1)

and the 4-th iteration of the scheme Iq = I2(Iq–1),

respectively.

The results of the implementation of the algorithm

can be seen in more detail in Fig. 3. It shows the linear

profiles of the reconstructed images  and 

together with the original image p0(x, y).

Figure 3a shows zero approximation  of circular

disc p0. Arrows mark the location and orientation of

the vertical and horizontal sections of the recon-

structed image. The resulting linear profiles of original

object p0 (bold black line) and its reconstructions are

shown in Figs. 3b and 3c. Clearly, the implemented

algorithm resulted in that the edges of reconstructed

and corrected image  become sharper, its intensity

practically coincides with the original, and errors and

reconstruction artifacts present in zero approximation

 are eliminated, which leads to a considerable

increase in the signal-to-noise ratio. Similar results

were obtained for more complex 2D and 3D objects.
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Figure 4 shows the results of the implemented algo-

rithm for a 2D phantom of a vascular tree. It should be

emphasized here that the proposed iterative correction

algorithm efficiently operates for both horizontal and

vertical linear structures, which are especially poorly

reconstructed with a limited view and linear arrange-

ment of detectors only on the upper surface of the

sample (see, for example, vertical segments of

branches in Fig. 4b).

A similar result is obtained in 3D simulation, when

a 3D numerical model of the aorta with an aneurysm was

used as the original object for reconstruction (Fig. 5).

The original image of the aorta is shown in Fig. 5a,

the result of the k-Wave reconstruction (  in our

notations) is shown in Fig. 5b, and corrected modifi-

cation  of the reconstructed image is shown in

Fig. 5c. More detailed differences between the recon-

structed images are shown in Fig. 5d, which presents

the results of reconstruction in the central x–z section

of the simulated 3D vascular tree (line notations are

the same as in Fig. 3). Similar to the 2D case, the algo-

rithm considerably improves the quality of the recon-

structed object and much more accurately reproduces

its boundaries, edges, and intensity.

Quantitative estimates of the reconstruction qual-

ity for the described reconstructed objects in terms of

the SSIM index are summarized in the Table 1.

Clearly, the proposed algorithm considerably

(0)

0p

ℜ2

(4)p
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Fig. 4. (а) Original image p0, (b) reconstructed images , and (c) corrected image .
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enhances the reconstruction quality for both the 2D

and 3D OA images (the best indicators are highlighted

in bold).

The rate of convergence of the proposed iterative

schemes can be estimated from the results shown in

Fig. 6. As it was mentioned above, such characteristics
as the SSIM index and relative error E were used as cri-

teria of the efficiency of the image correction. Figure 5

shows that with an increase in iteration number q, both

proposed iterative schemes Iq = R(Iq–1) and Iq = I(Iq–1)

provide a steady enhancement in image quality both in

terms of SSIM and E. In both cases, faster conver-
ACOUSTICAL PHYSICS  Vol. 68  No. 4  2022
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Fig. 5. Reconstruction of 3D phantom of aorta with aneurysm: (а) original image p0, (b) reconstructed image , (c) corrected

image , and (d) linear profiles of images in central x–z section of 3D phantom. Line notations are the same as in Fig. 3.

(а) (b)

(c) (d)

(0)

0p

ℜ2

(4)p

Fig. 6. Dependence of criteria of quality of OA image correction on iteration number q for different iterative schemes when recon-
structing plane circular disk.

1.0

0.9

0.8

0.7

0.6

0.5

0.4
0 2 4 6

q
8 10

0.40

(a)

SSIM(p0, p(.))
(q)

(b)

E(p0, p(.))
(q)

0.35

0.30

0.25

0.20

0.15

0.10
0 2 4 6

q
8 10

N1

I1

N2

I2

N1

I1

N2

I2



402 RUDNITSKII

Table 1. Structure similarity index 

Object

Iterations

2D disk 0.414 0.966 0.955

2D vessels 0.359 0.889 0.849

3D aorta 0.771 0.967 0.971

⋅
⋅

( )
0 ( )( , )SSIM p p

(0)
0p ℜ2

(10)p
2

(10)p
I

gence is provided by the algorithms Iq = R2(Iq–1) and

Iq = I2(Iq–1). Figure 6 shows the dependences for dif-

ferent iterative schemes when reconstructing a plane

circular disk. Similar patterns were observed when

reconstructing other model objects.

CONCLUSIONS

The main objective of this work was to develop and

study a numerical algorithm to correct artifacts and

distortions resulting from the reconstruction of OA

images. The problem was to develop an algorithm

capable of compensating for the features of a particular

reconstruction method. The proposed iterative

scheme of the correction of OA images is based on the

Banach fixed point theorem.

To study the efficiency of the proposed algorithm,

a numerical model of an OA experiment was con-

structed that simulates a biological tissue with an

embedded object to be reconstructed. The linear (2D

case) or planar (3D case) detecting acoustic arrays

located on the surface of the studied samples were

considered.

The k-Wave software code operating in the MATLAB

toolbox was used to solve the inverse problem of the

reconstruction of the original OA sources. This soft-

ware code makes it possible to simulate a medium for

propagation of acoustic waves using such characteris-

tics as the density and ultrasound velocity. The solu-

tion of the inversed problem of optoacoustics obtained

using the algorithms of the k-Wave Matlab toolbox

was corrected using an iterative algorithm based on the

Banach fixed point theorem. Four iterative schemes of

the correction of a reconstructed image were pro-

posed.

The reconstruction quality was determined using

both the quantitative and visual estimates of the

obtained results. The efficiency of the iterative algo-

rithm of enhancing the reconstruction quality was

quantitatively estimated using the structure similarity

index SSIM and relative reconstruction error E. It was

shown that this algorithm makes it possible to consid-

erably improve the image quality as compared with the

original OA reconstruction.

The results obtained in this work may be important

from the point of view of the prospects for their further
practical application to solve biomedical imaging prob-

lems. The final conclusions about the efficiency of the

approach proposed in this work can be drawn after its

testing on arrays of practical experimental data.
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