Skip to main content
Log in

Determination of the Elastic Properties of a Solid Sphere Based on the Results of Acoustic Beam Scattering

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

When using elastic spherical scatterers in acoustic problems, it is necessary to know their main elastic parameters that characterize the internal resonances. In this study, it has been shown that the velocities of longitudinal and transverse waves in a solid sphere can be determined from the scattering characteristics of an ultrasound beam. Millimeter-sized steel, glass, and nylon spheres that were immersed in water were considered as scatterers. In experiments an acoustic field was created by a flat piezoelectric source operating in the megahertz frequency range in a pulsed mode. By comparing the experimental data and numerical calculations for the scattered-field amplitude, the velocities of elastic waves in the materials of spheres were determined and their absorption coefficients were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. A. Krasil’nikov and V. V. Krylov, Introduction to Physical Acoustics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  2. K. N. Rozhdestvenskii and L. A. Tolokonnikov, Akust. Zh. 36 (5), 927 (1990).

    Google Scholar 

  3. E. L. Shenderov, Acoust. Phys. 48 (5), 607 (2002).

    Article  ADS  Google Scholar 

  4. S. M. Hasheminejad and M. Maleki, Acoust. Phys. 54 (2), 168 (2008).

    Article  ADS  Google Scholar 

  5. V. A. Bulanov and L. Bjorno, Akust. Zh. 38 (2), 252 (1992).

    Google Scholar 

  6. A. V. Nikolaeva, S. A. Tsysar, and O. A. Sapozhnikov, Acoust. Phys. 62 (1), 38 (2016).

    Article  ADS  Google Scholar 

  7. L. A. Mal’tseva, M. A. Gervas’ev, and A. B. Kut’in, Material Science (Ural Federal Univ., Yekaterinburg, 2012) [in Russian].

    Google Scholar 

  8. D. N. MacLennan and J. R. Dunn, J. Sound Vib. 97 (2), 321 (1984).

  9. J. J. Faran, J. Acoust. Soc. Am. 23 (4), 405 (1951).

    Article  ADS  Google Scholar 

  10. R. Hickling, J. Acoust. Soc. Am. 34 (10), 1582 (1962).

    Article  ADS  Google Scholar 

  11. L. Flax and H. Überall, J. Acoust. Soc. Am. 67 (5), 1432 (1980).

    Article  ADS  Google Scholar 

  12. H. Überall, Trait. Signal 2 (5), 353 (1985).

    Google Scholar 

  13. G. C. Gaunaurd and H. Überall, J. Acoust. Soc. Am. 73 (1), 1 (1983).

    Article  ADS  Google Scholar 

  14. G. C. Gaunaurd, IEEE J. Oceanic Eng. 12 (2), 419 (1987).

    Article  ADS  Google Scholar 

  15. L. Flax, L. R. Dragonette, and H. Überall, J. Acoust. Soc. Am. 63 (2), 723 (1978).

    Article  ADS  Google Scholar 

  16. J. W. S. Rayleigh, Theory of Sound (Macmillan, 1894; Gostekhteorizdat, Moscow, 1955), Vol. 2.

  17. J. W. Strutt, Philos. Mag. 20 (120), 1001 (1910).

    Article  Google Scholar 

  18. R. H. Vogt and W. G. Neubauer, J. Acoust. Soc. Am. 60 (1), 15 (1976).

    Article  ADS  Google Scholar 

  19. J. P. Sessarego, J. Sageloli, R. Guillermin, and H. Überall, J. Acoust. Soc. Am. 104 (5), 2836 (1998).

    Article  ADS  Google Scholar 

  20. G. C. Gaunaurd and M. F. Werby, J. Acoust. Soc. Am. 89 (6), 2731 (1991).

    Article  ADS  Google Scholar 

  21. E. L. Shenderov, Sound Radiation and Scattering (Sudostroenie, Leningrad, 1989) [in Russian].

    Google Scholar 

  22. K. L. Williams and P. L. Marston, J. Acoust. Soc. Am. 78 (3), 1093 (1985).

    Article  ADS  Google Scholar 

  23. K. G. Foote, in Proc. IEEE Ultrasonics Symp. (Chicago, Oct. 14–16, 1981).

  24. H. Hobæk and T. N. Forland, Acta Acust. Acust. 99 (3), 465 (2013).

    Article  Google Scholar 

  25. W. G. Neubauer, R. H. Vogt, and L. R. Dragonette, J. Acoust. Soc. Am. 55 (6), 1123 (1974).

    Article  ADS  Google Scholar 

  26. L. R. Dragonette, R. H. Vogt, L. Flax, and W. G. Neubauer, J. Acoust. Soc. Am. 55 (6), 1130 (1974).

    Article  ADS  Google Scholar 

  27. V. M. Ayres and G. C. Gaunaurd, J. Acoust. Soc. Am. 82 (4), 1291 (1987).

    Article  ADS  Google Scholar 

  28. J. M. Perdigão, A. Ferreira, J. E. Lefebre, and C. Bruneel, Ultrasonics 26 (2), 102 (1988).

    Article  Google Scholar 

  29. S. A. Tsysar, V. A. Khokhlova, and W. Kreider, J. Acoust. Soc. Am. 138 (3), 1515 (2015).

    Article  ADS  Google Scholar 

  30. O. A. Sapozhnikov and M. R. Bailey, J. Acoust. Soc. Am. 133 (2), 661 (2013).

    Article  ADS  Google Scholar 

  31. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya literatura, Moscow, 1959), Vol. 2.

  32. W. J. Wiscombe, Appl. Opt. 19 (9), 1505 (1980).

    Article  ADS  Google Scholar 

  33. H. C. Strifors and G. C. Gaunaurd, J. Acoust. Soc. Am. 85 (3), 995 (1989).

    Article  ADS  Google Scholar 

  34. R. H. Vogt, L. Flax, L. R. Dragonette, and W. G. Neubauer, J. Acoust. Soc. Am. 57 (3), 558 (1975).

    Article  ADS  Google Scholar 

  35. V. M. Ayres and G. C. Gaunaurd, J. Acoust. Soc. Am. 81 (2), 301 (1987).

    Article  ADS  Google Scholar 

  36. A. R. Selfridge, IEEE Trans. Sonics Ultrason. 32 (3), 381 (1985).

    Article  Google Scholar 

  37. Physical Quantities: Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  38. I. K. Kikoin, Tables of Physical Quantities (Atomizdat, Moscow, 1976) [in Russian].

  39. N. A. Kozlov and A. D. Mitrofanov, Polymers Physics (Vladimir State Univ., Vladimir, 2001) [in Russian].

    Google Scholar 

Download references

FUNDING

This study was supported by the Russian Science Foundation, project no. 19-12-00148. The theoretical part of this study was performed with the support of a grant from the Theoretical Physics and Mathematics Advancement Foundation “BASIS” (L.M. Kotelnikova).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kotelnikova.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotelnikova, L.M., Nikolaev, D.A., Tsysar, S.A. et al. Determination of the Elastic Properties of a Solid Sphere Based on the Results of Acoustic Beam Scattering. Acoust. Phys. 67, 360–374 (2021). https://doi.org/10.1134/S1063771021040072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021040072

Keywords:

Navigation