Skip to main content
Log in

Comparative Analysis of the Noise Immunity of Algorithms for Reconstructing Seabed Geoacoustic Parameters by the Coherent Sounding Technique

  • OCEAN ACOUSTICS. HYDROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Based on a previously developed numerical model, a comparative analysis of the efficiency of algorithms for reconstructing the geoacoustic parameters for a seabed with a layered structure is carried out based on probing signals in a synchronized sequence of mutually coherent complex signals. The algorithms differ in how the multiparameter criterion function is constructed; when its extremum is found, it yields an estimate of the required parameters. As such functions, the root-mean-square norm of the signal mismatch, functionals of generalized MUSIC methods, and neuronlike convolution are used. The stability of the estimates obtained (in terms of the mean bias and variance of deviations from the true value) is investigated by stochastic modeling as a function of the signal-to-noise ratio at the receiver inputs. It is shown that the considered algorithms exhibit significantly different noise immunity, which in turn depends on which particular parameter is to be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. A. Lazarev, A. I. Malekhanov, L. R. Merklin, V. I. Romanova, V. I. Talanov, and A. I. Khil’ko, Oceanology 53 (6), 755 (2013).

    Article  ADS  Google Scholar 

  2. V. I. Kalinina, I. P. Smirnov, A. I. Malekhanov, and A. I. Khil’ko, Bull. Russ. Acad. Sci.: Phys. 81 (8), 920 (2017).

    Article  Google Scholar 

  3. Seismic Exploring. Handbook for Geophysicist, Ed. by I. I. Gurvich and V. P. Nomokonov (Nedra, Moscow, 1981) [in Russian].

    Google Scholar 

  4. Yu. P. Ampilov, A. Yu. Barkov, I. V. Yakovlev, K. E. Filippova, and I. I. Priezzhev, Tekhnol. Seismorazvedki, No. 4, 3 (2009) [in Russian].

    Google Scholar 

  5. I. V. Yakovlev, Yu. P. Ampilov, and K. E. Filippova, Tekhnol. Seismorazvedki, No. 1, 5 (2011) [in Russian].

    Google Scholar 

  6. Y.-M. Jiang, N. R. Chapman, and P. Gerstof, J. Acoust. Soc. Am. 124 (3), Pt. 2, EL135-140 (2008).

    Google Scholar 

  7. A. I. Belov and G. N. Kuznetsov, Acoust. Phys. 60 (2), 191 (2014).

    Article  ADS  Google Scholar 

  8. I. P. Smirnov, V. I. Kalinina, and A. I. Khil’ko, Acoust. Phys. 64 (1), 49 (2018).

    Article  ADS  Google Scholar 

  9. I. P. Smirnov, V. I. Kalinina, and A. I. Khil’ko, Acoust. Phys. 64 (2), 205 (2018).

    Article  ADS  Google Scholar 

  10. V. I. Kalinina, I. P. Smirnov, A. I. Khil’ko, and A. A. Khil’ko, Acoust. Phys. 65 (1), 30 (2019).

    Article  ADS  Google Scholar 

  11. S. E. Dosso and J. Dettmer, Inverse Probl. 27, 055009 (2001).

    Article  ADS  Google Scholar 

  12. A. V. Lebedev and A. I. Malekhanov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 66 (7), 579 (2003) [in Russian].

    Google Scholar 

  13. L. M. Brekhovskikh and Yu. P. Lysanov, Theoretical Foundations of Ocean Acoustics (Nauka, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  14. J. K. Rice and J. S. White, SIAM Rev., No. 6, 243 (1964).

  15. G. S. Malyshkin and G. B. Sidel’nikov, Acoust. Phys. 60 (5), 570 (2014).

    Article  ADS  Google Scholar 

  16. A. G. Sazontov and A. I. Malekhanov, Acoust. Phys. 61 (2), 213 (2015).

    Article  ADS  Google Scholar 

  17. R. O. Schmidt, IEEE Trans. Antennas Propag. 34 (3), 276 (1986).

    Article  ADS  Google Scholar 

  18. A. G. Sazontov and I. P. Smirnov, Acoust. Phys. 65 (4), 450 (2019).

    Article  ADS  Google Scholar 

  19. A. Khobotov, A. Khilko, and V. Yakhno, Opt. Mem. Neural Networks (Inf. Opt.), No. 5, 892 (2008).

  20. A. G. Khobotov, A. I. Khil’ko, and V. I. Romanova, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 56 (2), 104 (2013) [in Russian].

    Google Scholar 

Download references

Funding

Research on developing algorithms for estimating parameters and simulating their noise immunity (Sections 4, 5) was carried out under the basic part of the state task of Niznhy Novgorod State University (topic no. 0729-2020-0037); signal and reverberation noise models (Sections 2, 3) were developed under the state task of IAP RAS (topic no. 0030-2021-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kalinina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, V.I., Smirnov, I.P., Khilko, A.I. et al. Comparative Analysis of the Noise Immunity of Algorithms for Reconstructing Seabed Geoacoustic Parameters by the Coherent Sounding Technique. Acoust. Phys. 67, 381–396 (2021). https://doi.org/10.1134/S1063771021040035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021040035

Keywords:

Navigation