Skip to main content
Log in

A Study of Wave Processes in Elastic Topographic Waveguides

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract—

The characteristic features of acoustic wave propagation in orthotropic elastic topographic waveguides are investigated for waveguides in the form of extended cylindrical structures with symmetric cross sections of different shapes (rectangular or trapezoidal). A method for an approximate study of problems using variable-rigidity plate models on the basis of the Hamilton–Ostrogradskii principle is proposed. Based on a field structure hypothesis that is similar to the Timoshenko model in the theory of plates, a functional depending on three functions of a single variable has been constructed. The stationary value of the functional is determined by the Ritz method. Its convergence has been investigated depending on the number of coordinate functions. An algebraic system has been formed whose determinant, being set equal to zero, allows one to construct the dispersion equation of the problem. Dispersion dependences were obtained for cross sections of different geometries. A comparison has been carried out between the dispersion curves formed on the basis of the Timoshenko-type model and the previously studied Kirchhoff model. The cut-off frequencies are determined for elastic waveguides with triangular, rectangular, and trapezoidal cross sections, and a comparative analysis has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. A. Ash, R. M. D. L. Rue, and R. F. Humphryes, IEEE Trans. Microwave Theory Tech. 17 (11), 882 (1969).

    Article  ADS  Google Scholar 

  2. P. E. Lagasse, I. M. Mason, and E. A. Ash, IEEE Trans. Microwave Theory Tech. MTT-21, 225 (1973).

    Article  ADS  Google Scholar 

  3. E. S. Sokolova, R. Timler, A. P. Mayer, and A. S. Kovalev, Wave Motion 50 (2), 233 (2013).

    Article  MathSciNet  Google Scholar 

  4. P. D. Pupyrev, A. M. Lomonosov, A. P. Mayer, and P. Hess, J. Appl. Phys. 115 (24), 243504 (2014).

    Article  ADS  Google Scholar 

  5. H. F. Tiersten and D. Rubin, Proc. IEEE Ultrasonic Symp. (Milwaukee, WI, Nov. 11–14, 1974), p. 117.

  6. G. L. Zavorokhin and A. I. Nazarov, Zap. Nauchn. Semin. LOMI 380, 45 (2010).

    Google Scholar 

  7. I. V. Kamotskii, Algebra Anal. 20 (1), 86 (2008).

    Google Scholar 

  8. V. M. Babich, Algebra Anal. 22 (1), 98 (2010).

    Google Scholar 

  9. P. D. Pupyrev, A. M. Lomonosov, A. Nikodijevic, and A. P. Mayer, Ultrasonics 71, 278 (2016).

    Article  Google Scholar 

  10. Yu. K. Konenkov, Akust. Zh. 6 (1), 124 (1960).

    MathSciNet  Google Scholar 

  11. I. V. Bogachev, A. O. Vatul’yan, V. V. Dudarev, and R. D. Nedin, Izv. Sarat. Univ. Nov. Ser. Ser.: Mat., Mekh., Inf. 17 (4), 419 (2017).

    Google Scholar 

  12. A. M. Lomonosov, P. Hess, and A. P. Mayer, Appl. Phys. Lett. 101 (3), 031904 (2012).

    Article  ADS  Google Scholar 

  13. A. O. Vatul’yan and V. O. Yurov, Acoust. Phys. 66 (2), 97 (2020).

    Article  ADS  Google Scholar 

  14. Changyong Jiang and Lixi Huang, J. Sound Vib. 418, 79 (2018).

  15. A. O. Vatul’yan and V. O. Yurov, Acoust. Phys. 63 (4), 369 (2017).

    Article  ADS  Google Scholar 

  16. A. O. Vatul’yan and L. I. Parinova, Vestn. Dagest. Gos. Tekh. Univ. 5 (4(26)) (2005).

  17. A. O. Vatulyan and L. I. Parinova, in Advanced Materials—Techniques, Physics, Mechanics and Applications, Ed. by I. A. Parinov, S.-H. Chang, and M. A. Jani (Springer, Cham, 2017), Vol. 193, p. 309.

    Google Scholar 

  18. A. O. Vatul’yan and L. I. Parinova, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, No. 3, 10 (2018).

    Google Scholar 

  19. L. I. Parinova, in Proc. Int. Conf. on Physics and Mechanics of New Materials and Their Applications, PHENMA 2018, Ed. by I. A. Parinov, S.-H. Chang, and Y.-H. Kim (Springer, 2019), Vol. 224, p. 487.

  20. S. V. Biryukov, Yu. V. Gulyaev, V. V. Krylov, and V. P. Plesskii, Surface Acoustic Waves in Inhomogeneous Mediums (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  21. A. Vatulyan and L. Parinova, in Proc. Int. Conf. on Physics and Mechanics of New Materials and Their Applications, PHENMA 2019, Ed. by I. A. Parinov, S.-H. Chang, and Y.-H. Kim (Springer Nature, Cham, 2020), Vol. 6, p. 383.

  22. V. S. Blistanov, V. S. Bondarenko, N. V. Peremolova, F. N. Strizhevskaya, V. V. Chkalova, and M. P. Shaskol’skaya, in Acoustic Crystals. Handbook, Ed. by M. P. Shaskol’skaya (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  23. S. G. Mikhlin, Variation Methods in Mathematical Physics (Gostekhizdat, Moscow, 1957) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the Russian Foundation for Basic Research, project no. 19-31-90079-A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. O. Vatulyan or L. I. Parinova.

Additional information

Translated by E. Golyamina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatulyan, A.O., Parinova, L.I. A Study of Wave Processes in Elastic Topographic Waveguides. Acoust. Phys. 67, 101–107 (2021). https://doi.org/10.1134/S1063771021020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021020093

Keywords:

Navigation