Skip to main content
Log in

Analysis of the Ovarian Marker Genes Expression Revealed the Antagonistic Effects of Serotonin and Androstenedione on the Functional State of Mouse Granulosa Cells in Primary Culture

  • ORIGINAL RESEARCH
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Primary culture of granulosa cells is a prerequisite for a complete study of the normal functioning of the ovary and its pathologies. In this work, we selected the optimal protocol for obtaining a primary culture of mouse granulosa cells in the most functionally active state and revealed the effects of androstenedione and serotonin on the expression of ovarian markers that reflect the functional status of granulosa cells. The morpho-functional analysis of the ovary after PMSG stimulation revealed that 48 hours after PMSG stimulation is the optimal time for obtaining granulosa cells in the most active functional state. Using the set of 14 ovarian functional state marker genes we reveal that androstenedione inhibits cumulus and immature granulosa markers but stimulates genes characteristic of the mature state of granulosa. At the same time, granulosa cells express serotonergic receptors and transporter SERT. The ovarian marker genes expression analysis revealed that serotonin affects the expression of genes characterizing the differentiation of granulosa cells towards cumulus cells. Summarizing, we can conclude that serotonin and androstenedione have an antagonistic effect on the functional state of mouse granulosa cells in primary culture in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Alam, M.H. and Miyano, T., Interaction between growing oocytes and granulosa cells in vitro, Reprod. Med. Biol., 2020, vol. 19, no. 1, pp. 13–23.

    Article  CAS  PubMed  Google Scholar 

  2. Alyoshina, N.M., Tkachenko, M.D., Malchenko, L.A., et al., Uptake and metabolization of serotonin by granulosa cells form a functional barrier in the mouse ovary, Int. J. Mol. Sci., 2022, vol. 23, no. 23.

  3. Amireault, P. and Dubé, F., Serotonin and its antidepressant-sensitive transport in mouse cumulus-oocyte complexes and early embryos, Biol. Reprod., 2005, vol. 73, no. 2, pp. 358–365.

    Article  CAS  PubMed  Google Scholar 

  4. Bao, B., Garverick, H.A., Smith, G.W., et al., Changes in messenger ribonucleic acid encoding luteinizing hormone receptor, cytochrome P450-side chain cleavage, and aromatase are associated with recruitment and selection of bovine ovarian follicles, Biol. Reprod., 1997, vol. 56, no. 5, pp. 1158–1168.

    Article  CAS  PubMed  Google Scholar 

  5. Bockaert, J., Bécamel, C., Chaumont-Dubel, S., et al., Novel and atypical pathways for serotonin signaling, Fac. Rev., 2021, vol. 10.

    Book  Google Scholar 

  6. Bódis, J., Sulyok, E., Kőszegi, T., et al., Serum and follicular fluid levels of serotonin, kisspeptin, and brain-derived neurotrophic factor in patients undergoing in vitro fertilization: an observational study, J. Int. Med. Res., 2020, vol. 48, no. 4, p. 030006051987933.

    Article  Google Scholar 

  7. Buznikov, G.A., Preneural transmitters as regulators of embryogenesis. Current state of problem, Russ. J. Dev. Biol., 2007, vol. 38, no. 4, pp. 213–220.

    Article  CAS  Google Scholar 

  8. Chen, L., Russell, P.T., and Larsen, W.J., Functional significance of cumulus expansion in the mouse: roles for the preovulatory synthesis of hyaluronic acid within the cumulus mass, Mol. Reprod. Dev., 1993, vol. 34, no. 1, pp. 87–93.

    Article  CAS  PubMed  Google Scholar 

  9. Corredor, A. and Flickinger, G.L., Hormonal regulation of progesterone secretion by cultured mouse granulosa cells, Biol. Reprod., 1983, vol. 29, no. 5, pp. 1142–1146.

    Article  CAS  PubMed  Google Scholar 

  10. Dubé, F. and Amireault, P., Local serotonergic signaling in mammalian follicles, oocytes and early embryos, Life Sci., 2007, vol. 81, nos. 25–26, pp. 1627–1637.

    Article  PubMed  Google Scholar 

  11. Fang, L., Chang, H.-M., Cheng, J.-C., et al., Growth differentiation factor-8 decreases StAR expression through ALK5-mediated Smad3 and ERK1/2 pathways in luteinized human granulosa cells, Endocrinology, 2015, p. en20151461.

  12. Galas, J.F., Primary culture of ovarian cells for research on cell interactions in the hormonal control of steroidogenesis, Methods Mol. Biol., 2012, vol. 806, pp. 227–249.

    Article  CAS  PubMed  Google Scholar 

  13. Graveleau, C., Paust, H.J., Schmidt-Grimminger, D., et al., Presence of a 5-HT7 receptor positively coupled to adenylate cyclase activation in human granulosa-lutein cells, J. Clin. Endocrinol. Metab., 2000, vol. 85, no. 3, pp. 1277–1286.

    CAS  PubMed  Google Scholar 

  14. Grzesiak, M., Knapczyk-Stwora, K., Duda, M., et al., Elevated level of 17β-estradiol is associated with overexpression of FSHR, CYP19A1, and CTNNB1 genes in porcine ovarian follicles after prenatal and neonatal flutamide exposure, Theriogenology, 2012, vol. 78, no. 9, pp. 2050–2060.

    Article  CAS  PubMed  Google Scholar 

  15. Hamel, M., Vanselow, J., Nicola, E.S., et al., Androstenedione increases cytochrome p450 aromatase messenger ribonucleic acid transcripts in nonluteinizing bovine granulosa cells, Mol. Reprod. Dev., 2005, vol. 70, no. 2, pp. 175–183.

    Article  CAS  PubMed  Google Scholar 

  16. Han, Y., Xia, G., and Tsang, B.K., Regulation of cyclin D2 expression and degradation by follicle-stimulating hormone during rat granulosa cell proliferation in vitro, Biol. Reprod., 2013, vol. 88, no. 3, p. 57.

    Article  PubMed  Google Scholar 

  17. Kim, A.R., Nodel, M.R., Pavlenko, T.A., et al., Tear fluid catecholamines as biomarkers of the Parkinson’s disease: a clinical and experimental study, Acta Naturae, 2019, vol. 11, no. 4, pp. 99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. KleinJan, G., Buckle, T., van Willigen, D., et al., Fluorescent lectins for local in vivo visualization of peripheral nerves, Molecules, 2014, vol. 19, no. 7, pp. 9876–9892.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Koppan, M., Bodis, J., Verzar, Z., et al., Serotonin may alter the pattern of gonadotropin-induced progesterone release of human granulosa cells in superfusion system, Endocrine, 2004, vol. 24, no. 2, pp. 155–159.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, L., Asada, H., Kizuka, F., et al., Changes in histone modification and DNA methylation of the StAR and Cyp19a1 promoter regions in granulosa cells undergoing luteinization during ovulation in rats, Endocrinology, 2013, vol. 154, no. 1, pp. 458–470.

    Article  CAS  PubMed  Google Scholar 

  21. Lim, H., Paria, B.C., Das, S.K., et al., Multiple female reproductive failures in cyclooxygenase 2-deficient mice, Cell, 1997, vol. 91, no. 2, pp. 197–208.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, W., Xin, Q., Wang, X., et al., Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals, Cell Death Dis., 2017, vol. 8, no. 3, p. e2662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morris, M.E., Meinsohn, M.-C., Chauvin, M., et al., A single-cell atlas of the cycling murine ovary, Elife, 2022, vol. 11.

  24. Nikishin, D.A., Khramova, Y.V., Bagayeva, T.S., et al., Expression of components of the serotonergic system in folliculogenesis and preimplantation development in mice, Russ. J. Dev. Biol., 2018a, vol. 49, no. 3, pp. 184–192.

    Article  CAS  Google Scholar 

  25. Nikishin, D.A., Filatov, M.A., Kiseleva, M.V., et al., Selection of stable expressed reference genes in native and vitrified/thawed human ovarian tissue for analysis by qRT-PCR and Western blot, J. Assist. Reprod. Genet., 2018b, vol. 35, no. 10, pp. 1851–1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nikishin, D.A., Alyoshina, N.M., Semenova, M.L., et al., Analysis of expression and functional activity of aromatic l-amino acid decarboxylase (DDC) and serotonin transporter (SERT) as potential sources of serotonin in mouse ovary, Int. J. Mol. Sci., 2019, vol. 20, no. 12, p. 3070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nikishin, D.A., Khramova, Y.V., Alyoshina, N.M., et al., Oocyte-mediated effect of serotonin on the functional status of granulosa cells, Russ. J. Dev. Biol., 2021, vol. 52, no. 2, pp. 97–104.

    Article  CAS  Google Scholar 

  28. Niswender, G.D., Molecular control of luteal secretion of progesterone, Reproduction, 2002, vol. 123, no. 3, pp. 333–339.

    Article  CAS  PubMed  Google Scholar 

  29. Qian, J., Zhu, R., Yan, R., et al., Isolation of mouse ovarian follicles for single-cell RNA-seq and in vitro culture, STAR Protoc., 2022, vol. 3, no. 3, p. 101537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qin, X., Li, J., Wang, S., et al., Serotonin/HTR1E signaling blocks chronic stress-promoted progression of ovarian cancer, Theranostics, 2021, vol. 11, no. 14, pp. 6950–6965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rapoport, R., Sklan, D., Wolfenson, D., et al., Antioxidant capacity is correlated with steroidogenic status of the corpus luteum during the bovine estrous cycle, Biochim. Biophys. Acta, 1998, vol. 1380, no. 1, pp. 133–140.

    Article  CAS  PubMed  Google Scholar 

  32. Sèdes, L., Leclerc, A., Moindjie, H., et al., Anti-Müllerian hormone recruits BMPR-IA in immature granulosa cells, PLoS One, 2013, vol. 8, no. 11, p. 81551.

    Article  Google Scholar 

  33. Sheng, Y., Wang, L., Liu, X.S.J.S., et al., A serotonin receptor antagonist induces oocyte maturation in both frogs and mice: evidence that the same G protein ptor is responsible for maintaining meiosis arrest in both species, J. Cell Physiol., 2005, vol. 202, no. 3, pp. 777–786.

    Article  CAS  PubMed  Google Scholar 

  34. Szeliga, A., Rudnicka, E., Maciejewska-Jeske, M., et al., Neuroendocrine determinants of polycystic ovary syndrome, Int. J. Environ. Res. Public Health, 2022, vol. 19, p. 3089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tanaka, E., Baba, N., Toshida, K., et al., Serotonin stimulates steroidogenesis in rat preovulatory follicles: involvement of 5-HT2 receptor, Life Sci., 1993, vol. 53, no. 7, pp. 563–570.

    Article  CAS  PubMed  Google Scholar 

  36. Tang, Z.R., Zhang, R., Lian, Z.X., et al., Estrogen-receptor expression and function in female reproductive disease, Cells, 2019, vol. 8, no. 10, p. 1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Terranova, P.F., Uilenbroek, J.T., Saville, L., et al., Serotonin enhances oestradiol production by hamster preovulatory follicles in vitro: effects of experimentally induced atresia, J. Endocrinol., 1990, vol. 125, no. 3, pp. 433–438.

    Article  CAS  PubMed  Google Scholar 

  38. Wigglesworth, K., Lee, K.B., Emori, C., et al., Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles, Biol. Reprod., 2015, vol. 92, no. 1, pp. 23–24.

    Article  PubMed  Google Scholar 

  39. Xiang, G., et al., Control of Gαq signaling dynamics and GPCR cross-talk by GRKs, Sci. Adv., 2022, vol. 8, no. 47, p. 3363.

    Article  Google Scholar 

  40. Xiong, X.R., Lan, D.L., Li, J., et al., Identification of differential abundances of mRNA transcript in cumulus cells and CCND1 associated with yak oocyte developmental competence, Anim. Reprod. Sci., 2019, vol. 208, p. 106135.

    Article  CAS  PubMed  Google Scholar 

  41. Zhen, Y.-H., Wang, L., Riaz, H., et al., Knockdown of CEBPβ by RNAi in porcine granulosa cells resulted in S phase cell cycle arrest and decreased progesterone and estradiol synthesis, J. Steroid Biochem. Mol. Biol., 2014, vol. 143, pp. 90–98.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using equipment of the Core Centrum of Institute of Developmental Biology RAS.

Funding

In the part that regards the selection of optimal conditions for obtaining primary culture, the research was funded by the Government Program for Basic Research in the Koltzov Institute of Developmental Biology of the Russian Academy of Sciences in 2023 no. 0088-2021-0009 for DN, NA, LM and YN. In the part that regards the role of serotonin, the research was funded by Russian Science Foundation, grant no. 22-74-10009, for DN, NA, YN, VK and AE.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, DN; methodology, DN and YN; software, AE; investigation, NA, LM, VR, YK, YN, VK; writing—original draft preparation, NA; writing—review and editing, DN; visualization, DN; supervision, DN; project administration, DN; funding acquisition, DN. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to D. A. Nikishin.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Statement on the welfare of animals. Experiments were performed in accordance with the Council of the European Communities Directive of November 24, 1986 (86/609/EEC). All protocols of animal experiments were approved by the Commission on Bioethics of the Koltzov Institute of Developmental Biology of the Russian Academy of Sciences (project identification code: no. 37, date: June 25, 2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alyoshina, N.M., Rousanova, V.R., Malchenko, L.A. et al. Analysis of the Ovarian Marker Genes Expression Revealed the Antagonistic Effects of Serotonin and Androstenedione on the Functional State of Mouse Granulosa Cells in Primary Culture. Russ J Dev Biol 54, 165–176 (2023). https://doi.org/10.1134/S1062360423030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360423030025

Keywords:

Navigation