Skip to main content
Log in

Current Status of Male Fertility Preservation in Humans

  • GAMETOGENESIS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Fertility preservation is often needed in assisted reproduction and to preserve fertility of patients of reproductive age with spermatogenic failure, severe oligozoospermia, a history of ejaculatory or collection issues, or for those at risk of iatrogenic sterilization from medical procedures or treatments such as vasectomy, testicular surgery, radiation therapy and chemotherapy. This review focuses on the current status of different approaches and technologies in male fertility preservation including cryopreservation of sperm, testicular tissue, and male germline stem cells. The cryobiological characteristics of sperm cells and testicular tissue as well as the mechanisms of cryoinjuries are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aizpurua, J., Medrano, L., Enciso, M., et al., New permeable cryoprotectant-free vitrification method for native human sperm, Hum. Reprod., 2007, vol. 32, pp. 2007–2015.

    Article  CAS  Google Scholar 

  2. Aliakbari, F., Gilani, M.A., Amidi, F., et al., Improving the efficacy of cryopreservation of spermatogonia stem cells by antioxidant supplements, Cell Reprogram., 2016, vol. 18, pp. 87–95.

    Article  CAS  PubMed  Google Scholar 

  3. Amidi, F., Pazhohan, A., Shabani-Nashtaei, M., et al., The role of antioxidants in sperm freezing: a review, Cell Tissue Bank, 2016, vol. 17, no. 4, pp. 745–756.

    Article  CAS  PubMed  Google Scholar 

  4. Baert, Y., Van Saen, D., Haentjens, P., et al., What is the best cryopreservation protocol for human testicular tissue banking?, Hum. Reprod., 2013, vol. 28, no. 7, pp. 1816–1826.

    Article  CAS  PubMed  Google Scholar 

  5. Baert, Y., Onofre, J., Van-Saen, D., et al., Cryopreservation of human testicular tissue by isopropyl-controlled slow freezing, Methods Mol. Biol., 2018, vol. 1748, pp. 287–294.

    Article  CAS  PubMed  Google Scholar 

  6. Bamyari, R., Zare, M., Sharma, R., et al., The efficacy of antioxidants in sperm parameters and production of reactive oxygen species levels during the freeze-thaw process: a systematic review and meta-analysis, Andrologia, 2020, vol. 52, no. 3, art. ID e13514.

    Google Scholar 

  7. Brinster, R.L. and Avarbock, M.R., Germline transmission of donor haplotype following spermatogonial transplantation, Proc. Natl. Acad. Sci. U. S. A., 1994a, vol. 91, no. 24, pp. 11303–11317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brinster, R.L. and Zimmermann, J.W., Spermatogenesis following male germ-cell transplantation, Proc. Natl. Acad. Sci. U. S. A., 1994b, vol. 91, no. 24, pp. 11298–11302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brook, P.F., Radford, J.A., Shalet, S.M., et al., Isolation of germ cells from human testicular tissue for low temperature storage and autotransplantation, Fertil. Steril., 2001, vol. 75, no. 2, pp. 269–274.

    Article  CAS  PubMed  Google Scholar 

  10. Cardoso, H.J., Figueira, M.I., and Socorro, S., The stem cell factor (SCF)/c-KIT signalling in testis and prostate cancer, J. Cell Commun. Signal., 2017, vol. 11, no. 4, pp. 297–307.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chatterjee, S. and Gagnon, C., Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing, Mol. Reprod., 2001, vol. 59, pp. 451–458.

    Article  CAS  Google Scholar 

  12. Curaba, M., Poels, J., van Langendonckt, A., et al., Can prepubertal human testicular tissue be cryopreserved by vitrification?, Fertil. Steril., 2011, vol. 95, no. 6, p. 2123. art. ID e2129-12

  13. Djaladat, H., Organ-sparing surgery for testicular tumours, Curr. Opin. Urol., 2015, vol. 25, no. 2, pp. 116–120.

    Article  PubMed  Google Scholar 

  14. Dovey, S.L., Valli, H., Hermann, B.P., et al., Eliminating malignant contamination from therapeutic human spermatogonial stem cells, J. Clin. Invest., 2013, vol. 123, pp. 1833–1843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Esmaeili, V., Shahverdi, A.H., Moghadasian, M.H., et al., Dietary fatty acids affect semen quality: a review, Andrology, 2015, vol. 3, pp. 450–461.

    Article  CAS  PubMed  Google Scholar 

  16. Feng, L.X., Chen, Y., Dettin, L., et al., Generation and in vitro differentiation of a spermatogonial cell line, Science, 2002, vol. 297, no. 5580, pp. 392–405.

    Article  CAS  PubMed  Google Scholar 

  17. Gadea, J., Molla, M., Selles, E., et al., Reduced glutathione content in human sperm is decreased after cryopreservation: effect of the addition of reduced glutathione to the freezing and thawing extenders, Cryobiology, 2011, vol. 62, pp. 40–46.

    Article  CAS  PubMed  Google Scholar 

  18. Gao, D.Y., Liu, J., Liu, C., et al., Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol, Hum. Reprod., 1995, vol. 10, pp. 1109–1122.

    Article  CAS  PubMed  Google Scholar 

  19. Goossens, E., Van-Saen, D., and Tournaye, H., Spermatogonial stem cell preservation and transplantation: from research to clinic, Hum. Reprod., 2013, vol. 28, no. 4, pp. 897–907.

    Article  CAS  PubMed  Google Scholar 

  20. Ha, S.J., Kim, B.G., Le, Y.A., et al., Effect of antioxidants and apoptosis inhibitors on cryopreservation of murine germ cells enriched for spermatogonial stem cells, PLoS One, 2016, vol. 11, art. ID e0161372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hermann, B.P., Sukhwani, M., Winkler, F., et al., Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm, Cell Stem Cell, 2012, vol. 11, no. 5, pp. 715–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Holt, W.V., Alternative strategies for the long-term preservation of spermatozoa, Reprod. Fertil. Dev., 1997, vol. 9, pp. 309–319.

    Article  CAS  PubMed  Google Scholar 

  23. Honaramooz, A., Li, M.W., Penedo, M.C.T., et al., Accelerated maturation of primate testis by xenografting into mice, Biol. Reprod., 2004, vol. 70, pp. 1500–1503.

    Article  CAS  PubMed  Google Scholar 

  24. Hu, H.H., Shi, X.W., Ji, G.J., et al., Studies on the basic issues relevant to sperm cryopreservation in humans, Ther. Adv. Reprod. Health, 2020a, vol. 14, pp. 1–7.

    Google Scholar 

  25. Hu, H.H., Ji, G.J., Shi, X.W., et al., Comparison of rapid freezing versus vitrification for human sperm cryopreservation using sucrose in closed straw systems, Cell Tissue Bank., 2020b, vol. 21, pp. 667–673.

    Article  CAS  PubMed  Google Scholar 

  26. Irie, N., Weinberger, L., Tang, W.W.C., et al., SOX17 is a critical specifier of human primordial germ cell fate, Cell, 2015, vol. 160, nos. 1–2, pp. 253–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Isachenko, V., Maettner, R., Petrunkina, A.M., et al., Cryoprotectant-free vitrification of human spermatozoa in large (up to 0.5 mL) volume: a novel technology, Clin. Lab., 2011, vol. 57, pp. 643–650.

    CAS  PubMed  Google Scholar 

  28. Isachenko, V., Maettner, R., Petrunkina, A.M., et al., Vitrification of human ICSI/IVF spermatozoa without cryoprotectants: new capillary technology, J. Androl., 2012, vol. 33, pp. 462–468.

    Article  CAS  PubMed  Google Scholar 

  29. Isachenko, V., Rahimi, G., Mallmann, P., et al., Technologies of cryoprotectant-free vitrification of human spermatozoa: asepticity as criterion of effectiveness, Andrology, 2017, vol. 5, pp. 1055–1063.

    Article  CAS  PubMed  Google Scholar 

  30. Izadyar, F., Den-Ouden, K., Stout, T.A., et al., Autologous and homologous transplantation of bovine spermatogonial stem cells, Reproduction, 2003, vol. 126, no. 6, pp. 765–774.

    Article  CAS  PubMed  Google Scholar 

  31. Kalthur, G., Raj, S., Thiyagarajan, A., et al., Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw-induced DNA damage, Fertil. Steril., 2011, vol. 95, pp. 1149–1151.

    Article  CAS  PubMed  Google Scholar 

  32. Karimfar, M.H., Niazvand, F., Haghani, K., et al., The protective effects of melatonin against cryopreservation-induced oxidative stress in human sperm, Int. J. Immunopathol. Pharmacol., 2015, vol. 28, pp. 69–76.

    Article  CAS  PubMed  Google Scholar 

  33. Katkov, I.I., Katkova, N., Critser, J.K., et al., Mouse spermatozoa in high concentrations of glycerol: chemical toxicity vs osmotic shock at normal and reduced oxygen concentration, Cryobiology, 1998, vol. 37, pp. 325–338.

    Article  CAS  PubMed  Google Scholar 

  34. Kawai, K. and Nishiyama, H., Preservation of fertility of adult male cancer patients treated with chemotherapy, Int. J. Clin. Oncol., 2019, vol. 24, no. 1, pp. 34–40.

    Article  CAS  PubMed  Google Scholar 

  35. Kenney, L.B., Cohen, L.E., Shnorhavorian, M., et al., Male reproductive health after childhood, adolescent, and young adult cancers: a report from the Children’s Oncology Group, J. Clin. Oncol., 2012, vol. 30, pp. 3408–3416.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Keros, V., Rosenlund, B., Hultenby, K., et al., Optimizing cryopreservation of human testicular tissue: comparison of protocols with glycerol., propanediol and dimethylsulphoxide as cryoprotectants, Hum. Reprod., 2005, vol. 20, no. 6, pp. 1676–1687.

    Article  CAS  PubMed  Google Scholar 

  37. Keros, V., Hultenby, K., Borgstrom, B., et al., Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment, Hum. Reprod., 2007, vol. 22, no. 5, pp. 1384–1395.

    Article  CAS  PubMed  Google Scholar 

  38. Kilcoyne, K.R. and Mitchell, R.T., FERTILITY PRESERVATION: testicular transplantation for fertility preservation: clinical potential and current challenges, Reproduction, 2019, vol. 158, no. 5, pp. F1–F14.

  39. Kumar, A., Prasad, J.K., Srivastava, N., et al., Strategies to minimize various stress-related freeze–thaw damages during conventional cryopreservation of mammalian spermatozoa, Biopreserv. Biobank., 2019, vol. 17, no. 6, pp. 603–612.

    Article  CAS  PubMed  Google Scholar 

  40. Kvist, K., Thorup, J., Byskov, A.G., et al., Cryopreservation of intact testicular tissue from boys with cryptorchidism, Hum. Reprod., 2006, vol. 21, no. 2. pp. 484–491.

    Article  CAS  PubMed  Google Scholar 

  41. Lee, Y.A., Kim, Y.H., Ha, S.J., et al., Effect of sugar molecules on the cryopreservation of mouse spermatogonial stem cells, Fertil. Steril., 2014, vol. 101, pp. 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  42. Liu, L., Wang, M.J., Yu, T.H., et al., Mitochondria-targeted antioxidant mitoquinone protects post-thaw human sperm against oxidative stress injury, Zhonghua Nan Ke Xue, 2016, vol. 22, no. 3, pp. 205–211.

    PubMed  Google Scholar 

  43. Liu, J., Tanrikut, C., Wright, D.L., et al., Cryopreservation of human spermatozoa with minimal non-permeable cryoprotectant, Cryobiology, 2016, vol. 73, pp. 162–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luo, F.H., Wu, S.L., Huang, J.J., et al., Analysis of differentiation potency of bovine spermatogonial stem cells in vitro, Chin. J. Cell Biol., 2014, vol. 36, no. 11, pp. 1526–1531.

    Google Scholar 

  45. Mahabadi, J.A., Sabzalipoor, H., Kehtari, M., et al., Derivation of male germ cells from induced pluripotent stem cells by inducers: a review, Cytotherapy, 2018, vol. 20, no. 3, pp. 279–290.

  46. Meistrich, M.L., Effects of chemotherapy and radiotherapy on spermatogenesis in humans, Fertil Steril., 2013, vol. 100, pp. 1180–1186.

    Article  CAS  PubMed  Google Scholar 

  47. Mohaqiq, M., Movahedin, M., Mazaheri, Z., et al., In vitro transplantation of spermatogonial stem cells isolated from human frozen-thawed testis tissue can induce spermatogenesis under 3-dimensional tissue culture conditions, Biol. Res., 2019, vol. 52, no. 1, p. 16.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moraveji, S.F., Esfandiari, F., Sharbatoghli, M., et al., Optimizing methods for human testicular tissue cryopreservation and spermatogonial stem cell isolation, J. Cell. Biochem., 2019, vol. 120, no. 1, pp. 613–621.

    Article  CAS  PubMed  Google Scholar 

  49. Nawroth, F., Isachenko, V., Dessole, S., et al., Vitrification of human spermatozoa without cryoprotectants, Cryo. Lett., 2002, vol. 23, pp. 93–102.

    CAS  Google Scholar 

  50. Ntali, G. and Karavitaki, N., Efficacy and complications of pituitary irradiation, Endocrinol. Metab. Clin. N. Am., 2015, vol. 44, no. 1, pp. 117–126.

    Article  Google Scholar 

  51. Oatley, J.M. and Brinster, R.L., The germline stem cell niche unit in mammalian testes, Physiol. Rev., 2012, vol. 92, pp. 577–595.

    Article  CAS  PubMed  Google Scholar 

  52. Ogawa, T., Dobrinski, I., Avarbock, M.R., et al., Transplantation of male germ line stem cells restores fertility in infertile mice, Nat. Med., 2000, vol. 6, no. 1, pp. 29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oldenhof, H., Gojowsky, M., Wang, S., et al., Osmotic stress and membrane phase changes during freezing of stallion sperm: mode of action of cryoprotective agents, Biol. Reprod., 2013, vol. 88, no. 3, p. 68.

    Article  PubMed  CAS  Google Scholar 

  54. Onofre, J., Baert, Y., Faes, K., et al., Cryopreservation of testicular tissue or testicular cell suspensions: a pivotal step in fertility preservation, Hum. Reprod. Update, 2016, vol. 22, no. 6, pp. 744–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pacchiarotti, J., Ramos, T., Howerton, K., et al., Developing a clinical-grade cryopreservation protocol for human testicular tissue and cells, Biomed. Res. Int., 2013, vol. 2013, p. 10.

    Article  Google Scholar 

  56. Pelzman, D.L., Orwig, K.E., and Hwang, K., Progress in translational reproductive science: testicular tissue transplantation and in vitro spermatogenesis, Fertil. Steril., 2020, vol. 113, no. 3, pp. 500–509.

    Article  PubMed  Google Scholar 

  57. Picton, H.M., Wyns, C., Anderson, R.A., et al., A European perspective on testiculartissue cryopreservation for fertility preservation in prepubertal and adolescent boys, Hum. Reprod., 2015, vol. 30, pp. 2463–2475.

    Article  PubMed  Google Scholar 

  58. Poels, J., Van-Langendonckt, A., Many, M.C., et al., Vitrification preserves proliferation capacity in human spermatogonia, Hum. Reprod., 2013, vol. 28, no. 3, pp. 578–589.

    Article  CAS  PubMed  Google Scholar 

  59. Ryu, B.Y., Orwig, K.E., Avarbock, M.R., et al., Stem cell and niche development in the postnatal rat testis, Dev. Biol., 2003, vol. 263, no. 2, pp. 253–263.

    Article  CAS  PubMed  Google Scholar 

  60. Sa, R., Cremades, N., Malheiro, I., et al., Cryopreservation of human testicular diploid germ cell suspensions, Andrologia, 2012, vol. 44, no. 6, pp. 366–372.

    Article  CAS  PubMed  Google Scholar 

  61. Sa, L., Kong, Q.F., and Wu, Y.J., The effects of c-kit on development of male germ cells in the mammals testis, Chin. J. Cell Biol., 2013, vol. 35, no. 5, pp. 703–711.

    Google Scholar 

  62. Sadri-Ardekani, H. and Atala, A., Testicular tissue cryopreservation and spermatogonial stem cell transplantation to restore fertility: from bench to bedside, Stem. Cell. Res. Ther., 2014, vol. 5, no. 3, p. 68.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sato, T., Katagiri, K., Gohbara, A., et al., In vitro production of functional sperm in cultured neonatal mouse testes, Nature, 2011a, vol. 471, no. 7339, pp. 504–507.

    Article  CAS  PubMed  Google Scholar 

  64. Sato, T., Katagiri, K., Yokonishi, T., et al., In vitro production of fertile sperm from murine spermatogonial stem cell lines, Nat. Commun., 2011b, vol. 2, p. 472.

    Article  PubMed  CAS  Google Scholar 

  65. Schlatt, S., Foppiani, L., Rolf, C., et al., Germ cell transplantation into X-irradiated monkey testes, Hum. Reprod., 2002, vol. 17, no. 1, pp. 55–62.

    Article  CAS  PubMed  Google Scholar 

  66. Shi, X.W., Hu, H.H., Ji, G.J., et al., Effects of MTG and GSH on human sperm motility and DNA integrity during vitrification in the presence of trehalose, Adv. Reprod. Sci., 2020, vol. 8, pp. 71–81.

    Article  CAS  Google Scholar 

  67. Slabbert, M., Du-Plessis, S.S., and Huyser, C., Large volume cryoprotectant-free vitrification: an alternative to conventional cryopreservation for human spermatozoa, Andrologia, 2015, vol. 47, pp. 594–599.

    Article  CAS  PubMed  Google Scholar 

  68. Thomson, L.K., Fleming, S.D., Aitken, R.J., et al., Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis, Hum. Reprod., 2009, vol. 24, pp. 2061–2070.

    Article  CAS  PubMed  Google Scholar 

  69. Tongdee, P., Sukprasert, M., Satirapod, C., et al., Comparison of cryopreserved human sperm between ultra rapid freezing and slow programmable freezing: effect on motility, morphology and DNA integrity, J. Med. Assoc. Thailand., 2015, vol. 98, pp. 33–42.

    Google Scholar 

  70. Unni, S., Kasiviswanathan, S., D’Souza, S., et al., Efficient cryopreservation of testicular tissue: effect of age, sample state, and concentration of cryoprotectant, Fertil. Steril., 2012, vol. 97, no. 1, pp. 200–208. е201.

    Article  CAS  PubMed  Google Scholar 

  71. Van-Saen, D., Goossens, E., Bourgain, C., et al., Meiotic activity in orthotopic xenografts derived from human postpubertal testicular tissue, Hum. Reprod., 2011, vol. 26, pp. 282–293.

    Article  CAS  PubMed  Google Scholar 

  72. Woods, E.J., Benson, J.D., Agca, Y., et al., Fundamental cryobiology of reproductive cells and tissues, Cryobiology, 2004, vol. 48, no. 2, pp. 146–156.

    Article  CAS  PubMed  Google Scholar 

  73. Wyns, C., Curaba, M., Martinez-Madrid, B., et al., Spermatogonial survival after cryopreservation and short-term orthotopic immature human cryptorchid testicular tissue grafting to immunodeficient mice, Hum. Reprod., 2007, vol. 22, no. 6, pp. 1603–1611.

    Article  PubMed  Google Scholar 

  74. Wyns, C., Curaba, M., Petit, S., et al., Management of fertility preservation in prepubertal patients: 5 years’ experience at the Catholic University of Louvain, Hum. Reprod., 2011, vol. 26, no. 4, pp. 737–747.

    Article  CAS  PubMed  Google Scholar 

  75. Yango, P., Altman, E., Smith, J.F., et al., Optimizing cryopreservation of human spermatogonial stem cells: comparing the effectiveness of testicular tissue and single cell suspension cryopreservation, Fertil. Steril., 2014, vol. 102, no. 5, pp. 1491–1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yu, G., Liu, Y., Zhang, H., et al., Application of testicular spermatozoa cryopreservation in assisted reproduction, Int. J. Gynaecol. Obstet., 2018, vol. 142, no. 3, pp. 354–358.

    Article  PubMed  Google Scholar 

  77. Zarandi, N.P., Galdon, G., Kogan, S., et al., Cryostorage of immature and mature human testis tissue to preserve spermatogonial stem cells (SSCs): a systematic review of current experiences toward clinical applications, Stem Cells Clon., 2018, vol. 11, pp. 23–38.

    Google Scholar 

  78. Zribi, N., Chakroun, N.F., Ben-Abdallah, F., et al., Effect of freezing-thawing process and quercetin on human sperm survival and DNA integrity, Cryobiology, 2012, vol. 65, pp. 326–331.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (the Joint Funds of NSFC and Henan Province U1604179), Henan Province Foundation (20B310013), Xinxiang City Foundation (GG2019022), Fertility Preservation Technology Innovation Team of Sanquan College of Xinxiang Medical University (SQTD201801) and Key Teacher Training Project of Sanquan College of Xinxiang Medical University (SQ2019GGJS06).

Author information

Authors and Affiliations

Authors

Contributions

All authors have accepted responsibility for the entire content of this submitted manuscript and approved its submission.

ABBREVIATIONS

SSC, spermatogonial stem cell; CPA, cryoprotective agents; IUI, intra-uterine insemination; IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection; IVS, in vitro spermatogenesis; TESA, testicular sperm aspiration; DMSO, dimethyl sulfoxide; EG, ethylene glycol; ROS, reactive oxygen species; GSH, reduced glutathione; MTG, monothioglycerol.

Corresponding author

Correspondence to Mingwen Li.

Ethics declarations

All authors declare no competing interests. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huanhuan Hu, Ji, G., Shi, X. et al. Current Status of Male Fertility Preservation in Humans. Russ J Dev Biol 53, 134–140 (2022). https://doi.org/10.1134/S1062360422020060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360422020060

Keywords:

Navigation