Skip to main content
Log in

Characterization of Multi-Domain Proteins in the ArsR/SmtB Family of Transcriptional Regulators

  • BIOCHEMISTRY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Studies centered on single-domain proteins revealed several fundamental characteristics about how they work, but the multimeric proteins are more complex. Analysis of multimeric protein sequences and their three-dimensional structures revealed several important characteristics about these proteins, still, further analyses are required especially in the context of how multi-domain proteins evolved from the single domain ones. In the present study, we have created a dataset of the ArsR/SmtB family of proteins to study how multimeric proteins in the family evolved from the single-domain ones. The ArsR/SmtB family is one of the diverse groups of prokaryotic proteins which primarily function as transcriptional regulators. These proteins generally regulate metal-efflux pumps that pump out the toxic metal ions from the cell when intracellular concentrations of metal ions rise at alarming levels. We have found that in ArsR/SmtB family, protein sequences having more than 150 aa tend to lose their metal-binding residues located in the ArsR domain and additional domains start to appear which may take dominant roles in the overall functionality of the protein. Based on our analysis we proposed a model on how multi-domain proteins may have evolved from single-domain proteins in the ArsR/SmtB family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

DATA AVAILABILITY

The datasets are available from the corresponding author on reasonable request.

REFERENCES

  1. Anantharaman, V., Koonin, E.V., and Aravind, L., Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains, J. Mol. Biol., 2001, vol. 307, pp. 1271–1292.

    Article  CAS  PubMed  Google Scholar 

  2. Babushok, D.V., Ostertag, E.M., and Kazazian, H.H., Jr., Current topics in genome evolution: Molecular mechanisms of new gene formation, Cell Mol. Life Sci., 2007, vol. 64, pp. 542–554.

    Article  CAS  PubMed  Google Scholar 

  3. Bashton, M. and Chothia, C., The generation of new protein functions by the combination of domains, Structure, 2007, vol. 15, pp. 85–99.

    Article  CAS  PubMed  Google Scholar 

  4. Basu, M.K., Carmel, L., Rogozin, I.B., and Koonin, E.V., Evolution of protein domain promiscuity in eukaryotes, Genome Res., 2008, vol. 18, pp. 449–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Björklund, A.K., Ekman, D., Light, S., Frey-Skött, J., and Elofsson, A., Domain rearrangements in protein evolution, J. Mol. Biol., 2005, vol. 353, pp. 911–923.

    Article  PubMed  Google Scholar 

  6. Björklund, A.K., Ekman, D., and Elofsson, A., Expansion of protein domain repeats, PLoS Comput. Biol., 2006, vol. 2, p. e114. https://doi.org/10.1371/journal.pcbi.0020114

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Black, D.S., Irwin, B., and Moyed, H.S., Autoregulation of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis, J. Bacteriol., 1994, vol. 176, pp. 4081–4091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bordo, D. and Bork P. The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations, EMBO Rep., 2002, vol. 3, pp. 741–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buljan, M. and Bateman, A., The evolution of protein domain families, Biochem. Soc. Trans., 2009, vol. 37, pp. 751–755.

    Article  CAS  PubMed  Google Scholar 

  10. Busenlehner, L.S., Pennella, M.A., and Giedroc, D.P., The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance, FEMS Microbiol. Rev., 2003, vol. 27, pp. 131–143.

    Article  CAS  PubMed  Google Scholar 

  11. Capdevila, D.A., Edmonds, K.A., and Giedroc, D.P., Metallochaperones and metalloregulation in bacteria, Essays Biochem., 2017, vol. 61, pp. 177–200.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Capdevila, D.A., Walsh, B.J.C., Zhang, Y., Dietrich, C., Gonzalez-Gutierrez, G., and Giedroc, D.P., Structural basis for persulfide-sensing specificity in a transcriptional regulator, Nat. Chem. Biol., 2021, vol. 17, pp. 65–70.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, J. and Rosen, B.P., Biosensors for inorganic and organic arsenicals, Biosensors (Basel), 2014, vol. 4, pp. 494–512.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen, X., Zaro, J.L., and Shen, W.C., Fusion protein linkers: Property, design and functionality, Adv. Drug Delivery Rev., 2013, vol. 65, pp. 1357–1369.

    Article  CAS  Google Scholar 

  15. Chothia, C., Gough, J., Vogel, C., and Teichmann, S.A., Evolution of the protein repertoire, Science, 2003, vol. 300, pp. 1701–1703.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Cipollone, R., Ascenzi, P., Tomao, P., Imperi, F., and Visca, P., Enzymatic detoxification of cyanide: clues from Pseudomonas aeruginosa Rhodanese, J. Mol. Microbiol. Biotechnol., 2008, vol. 15, pp. 199–211.

    CAS  PubMed  Google Scholar 

  17. Cook, W.J., Kar, S.R., Taylor, K.B., and Hall, L.M., Crystal structure of the cyanobacterial metallothionein repressor SmtB: a model for metalloregulatory proteins, J. Mol. Biol., 1998, vol. 275, pp. 337–346.

    Article  CAS  PubMed  Google Scholar 

  18. Denu, J.M. and Dixon, J.E., Protein tyrosine phosphatases: mechanisms of catalysis and regulation, Curr. Opin. Chem. Biol., 1998, vol. 2, pp. 633–641.

    Article  CAS  PubMed  Google Scholar 

  19. Ehira, S. and Ohmori, M., The redox-sensing transcriptional regulator RexT controls expression of thioredoxin A2 in the cyanobacterium Anabaena sp. strain PCC 7120, J. Bi-ol. Chem., 2012, vol. 287, pp. 40433–40440.

    Article  CAS  Google Scholar 

  20. Eichmann, C., Tzitzilonis, C., Bordignon, E., Maslennikov, I., Choe, S., and Riek, R., Solution NMR structure and functional analysis of the integral membrane protein YgaP from Escherichia coli, J. Biol. Chem., 2014, vol. 289, pp. 23482–23503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ekman, D., Björklund, A.K., Frey-Skött, J., and Elofsson, A., Multi-domain proteins in the three kingdoms of life: Orphan domains and other unassigned regions, J. Mol. Biol., 2005, vol. 348, pp. 231–243.

    Article  CAS  PubMed  Google Scholar 

  22. El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi, M., Richardson, L.J., Salazar, G.A., Smart, A., Sonnhammer, E.L.L., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S.C.E., and Finn, R.D., The Pfam protein families database in 2019, Nucleic Acids Res., 2019, vol. 47, pp. D427–D432.

    Article  CAS  PubMed  Google Scholar 

  23. Enright, A.J., Iliopoulos, I., Kyrpides, N.C., and Ouzounis, C.A., Protein interaction maps for complete genomes based on gene fusion events, Nature, 1999, vol. 402, pp. 86–90.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Federhen, S., The NCBI Taxonomy database, Nucleic Acids Res., 2012, vol. 40, pp. D136–D143.

    Article  CAS  PubMed  Google Scholar 

  25. Fernandez-López, R., Ruiz, R., de la Cruz, F., and Moncalián, G., Transcription factor-based biosensors enlightened by the analyte, Front. Microbiol., 2015, vol. 6, p. 648. https://doi.org/10.3389/fmicb.2015.00648

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, A., Protein identification and analysis tools on the ExPASy server, in The Proteomics Protocols Handbook, Walker, J.M., Ed., Humana Press, 2005, pp. 571–607.

    Google Scholar 

  27. Gerlt, J.A., Bouvier, J.T., Davidson, D.B., Imker, H.J., Sadkhin, B., Slater, D.R., and Whalen, K.L., Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks, Biochim. Biophys. Acta, 2015, vol. 1854, pp. 1019–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goodacre, N.F., Gerloff, D.L., and Uetz, P., Protein domains of unknown function are essential in bacteria, mBio, 2013, vol. 5, p. e00744-13. https://doi.org/10.1128/mBio.00744-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gupta, R.S., Evolutionary relationships among photosynthetic bacteria, Photosynth. Res., 2003, vol. 76, pp. 173–183.

    Article  CAS  PubMed  Google Scholar 

  30. Gupta, R.S., Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin’s views on classification, FEMS Microbiol. Rev., 2016, vol. 40, pp. 520–553.

    Article  CAS  PubMed  Google Scholar 

  31. Gupta, R.S., Mukhtar, T., and Singh, B., Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis, Mol. Microbiol., 1999, vol. 32, pp. 893–906.

    Article  CAS  PubMed  Google Scholar 

  32. Han, J.H., Batey, S., Nickson, A.A., Teichmann, S.A., and Clarke, J., The folding and evolution of multidomain proteins, Nat. Rev. Mol. Cell Biol., 2007, vol. 8, pp. 319–330.

    Article  CAS  PubMed  Google Scholar 

  33. Hegyi, H. and Gerstein, M., Annotation transfer for genomics: measuring functional divergence in multi-domain proteins, Genome Res., 2001, vol. 11, pp. 1632–1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hormoz, S., Amino acid composition of proteins reduces deleterious impact of mutations, Sci. Rep., 2013, vol. 3, p. 2919. https://doi.org/10.1038/srep02919

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. Huang, Y., Niu, B., Gao, Y., Fu, L., and Li, W., CD-HIT Suite: a web server for clustering and comparing biological sequences, Bioinformatics, 2010, vol. 26, pp. 680–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Imdad, S., Chaurasia, A.K., and Kim, K.K., Identification and validation of an antivirulence agent targeting HlyU-regulated virulence in Vibrio vulnificus, Front. Cell Infect. Microbiol., 2018, vol. 8, p.152.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jung, J.K., Alam, K.K., Verosloff, M.S., Capdevila, D.A., Desmau, M., Clauer, P.R., Lee, J.W., Nguyen, P.Q., Pastén, P.A., Matiasek, S.J., Gaillard, J.F., Giedroc, D.P., Collins, J.J., and Lucks, J.B., Cell-free biosensors for rapid detection of water contaminants, Nat. Biotechnol., 2020, vol. 38, pp. 1451–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, S.J., Engelmann, A., Horlacher, R., Qu, Q., Vierke, G., Hebbeln, C., Thomm, M., and Boos, W., TrmB, a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter from the hyperthermophilic archaeon Thermococcus litoralis, J. Biol. Chem., 2003, vol. 278, pp. 983–990.

    Article  CAS  PubMed  Google Scholar 

  39. Lee, S.G., Krishnan, H.B., and Jez, J.M., Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 6509–6514.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, Z.W., Kim, B.S., Jang, K.K., Bang, Y.J., Kim, S., Ha, N.C., Jung, Y.H., Lee, H.J., Han, H.J., Kim, J.S., Kim, J., Sahu, P.K., Jeong, L.S., Kim, M.H., and Choi, S.H., Small-molecule inhibitor of HlyU attenuates virulence of Vibrio species, Sci. Rep., 2019, vol. 9, p. 4346.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Li, L., Liang, J., Hong, W., Zhao, Y., Sun, S., Yang, X., Xu, A., Hang, H., Wu, L., and Chen, S., Evolved bacterial biosensor for arsenite detection in environmental water, Environ. Sci. Technol., 2015, vol. 49, pp. 6149–6155.

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Lima-Perim, J.E., Romagnoli, E.M., Dini-Andreote, F., Durrer, A., Dias, A.C., and Andreote, F.D., Linking the composition of bacterial and archaeal communities to characteristics of soil and flora composition in the Atlantic rainforest, PLoS One, 2016, vol. 11, p. e0146566. https://doi.org/10.1371/journal.pone.0146566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, S., Shi, Q., Nix, F.B., Styblo, M., Beck, M.A., Herbin-Davis, K.M., Hall, L.L., Simeonsson, J.B., and Thomas, D.J., A novel S-adenosyl-L-methionine:arsenic(III) methyltransferase from rat liver cytosol, J. Biol. Chem., 2002, vol. 277, pp. 10795–10803.

    Article  CAS  PubMed  Google Scholar 

  44. de Lira, N.P.V., Pauletti, B.A., Marques, A.C., Perez, C.A., Caserta, R., de Souza, A.A., Vercesi, A.E., Paes Leme, A.F., and Benedetti, C.E., BigR is a sulfide sensor that regulates a sulfur transferase/dioxygenase required for aerobic respiration of plant bacteria under sulfide stress, Sci. Rep., 2018, vol. 8, p. 3508.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  45. Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C.J., Lu, S., Chitsaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Lu, F., Marchler, G.H., Song, J.S., Thanki, N., Wang, Z., Yamashita, R.A., Zhang, D., Zheng, C., Geer, L.Y., and Bryant, S.H., CDD/SPARCLE: functional classification of proteins via subfamily domain architectures, Nucleic Acids Res., 2017, vol. 45, pp. D200–D203.

    Article  CAS  PubMed  Google Scholar 

  46. Marcotte, E.M., Pellegrini, M., Thompson, M.J., Yeates, T.O., and Eisenberg, D., A combined algorithm for genome-wide prediction of protein function, Nature, 1999, vol. 402, pp. 83–86.

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Moore, A.D., Björklund, A.K., Ekman, D., Bornberg-Bauer, E., and Elofsson, A., Arrangements in the modular evolution of proteins, Trends Biochem. Sci., 2008, vol. 33, pp. 444–451.

    Article  CAS  PubMed  Google Scholar 

  48. Mulder, N.J., Protein domain architectures, Methods Mol. Biol., 2010, vol. 609, pp. 83–95.

    Article  CAS  PubMed  Google Scholar 

  49. Ogura, T. and Wilkinson, A.J., AAA+ superfamily ATPases: common structure–diverse function, Genes Cells, 2001, vol. 6, pp. 575–597.

    Article  CAS  PubMed  Google Scholar 

  50. Pasek, S., Risler, J.L., and Brézellec, P., Gene fusion/fission is a major contributor to evolution of multi-domain bacterial proteins, Bioinformatics, 2006, vol. 22, pp. 1418–1423.

    Article  CAS  PubMed  Google Scholar 

  51. Patthy, L., Genome evolution and the evolution of exon-shuffling—a review, Gene, 1999, vol. 238, pp. 103–114.

    Article  CAS  PubMed  Google Scholar 

  52. Polz, M.F., Alm, E.J., and Hanage, W.P., Horizontal gene transfer and the evolution of bacterial and archaeal population structure, Trends Genet., 2013, vol. 29, pp. 170–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Prabaharan, C., Kandavelu, P., Packianathan, C., Rosen, B.P., and Thiyagarajan, S., Structures of two ArsR As(III)-responsive transcriptional repressors: Implications for the mechanism of derepression, J. Struct. Biol., 2019, vol. 207, pp. 209–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rigden, D.J., Ab initio modeling led annotation suggests nucleic acid binding function for many DUFs, OMICS, 2011, vol. 15, pp. 431–438.

    Article  CAS  PubMed  Google Scholar 

  55. Roy, R., Samanta, S., Patra, S., Mahato, N.K., and Saha, R.P., In silico identification and characterization of sensory motifs in the transcriptional regulators of the ArsR-SmtB family, Metallomics, 2018, vol. 10, pp. 1476–1500.

    Article  CAS  PubMed  Google Scholar 

  56. Saha, R.P. and Chakrabarti, P., Molecular modeling and characterization of Vibrio cholerae transcription regulator HlyU, BMC Struct. Biol., 2006, vol. 6, p. 24. https://doi.org/10.1186/1472-6807-6-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saha, R.P., Bahadur, R.P., and Chakrabarti, P., Interresidue contacts in proteins and protein-protein interfaces and their use in characterizing the homodimeric interface, J. Proteome Res., 2005, vol. 4, pp. 1600–1609.

    Article  CAS  PubMed  Google Scholar 

  58. Saha, R.P., Samanta, S., Patra, S., Sarkar, D., Saha, A., and Singh, M.K., Metal homeostasis in bacteria: the role of ArsR-SmtB family of transcriptional repressors in combating varying metal concentrations in the environment, BioMetals, 2017, vol. 30, pp. 459–503.

    Article  CAS  PubMed  Google Scholar 

  59. Selles, B., Moseler, A., Rouhier, N., and Couturier, J., Rhodanese domain-containing sulfurtransferases: multifaceted proteins involved in sulfur trafficking in plants, J. Exp. Bot., 2019, vol. 70, pp. 4139–4154.

    Article  CAS  PubMed  Google Scholar 

  60. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 2003, vol. 13, pp. 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sievers, F. and Higgins, D.G., Clustal Omega for making accurate alignments of many protein sequences, Protein Sci., 2018, vol. 27, pp. 135–145.

    Article  CAS  PubMed  Google Scholar 

  62. Squartini, A., Where the bugs are: analyzing distributions of bacterial phyla by descriptor keyword search in the nucleotide database, Microb. Inform. Exp., 2011, vol. 1, p. 7. https://doi.org/10.1186/2042-5783-1-7

    Article  PubMed  PubMed Central  Google Scholar 

  63. Teichmann, S.A., Chothia, C., and Gerstein, M., Advances in structural genomics, Curr. Opin. Struct. Biol., 1999, vol. 9, pp. 390–399.

    Article  CAS  PubMed  Google Scholar 

  64. Tonks, N.K., Protein tyrosine phosphatases: from genes, to function, to disease, Nat. Rev. Mol. Cell Biol., 2006, vol. 7, pp. 833–846.

    Article  CAS  PubMed  Google Scholar 

  65. Tordai, H., Nagy, A., Farkas, K., Bányai, L., and Patthy, L., Modules, multidomain proteins and organismic complexity, FEBS J., 2005, vol. 272, pp. 5064–5078.

    Article  CAS  PubMed  Google Scholar 

  66. UniProt: the Universal Protein knowledgebase, Nucleic Acids Res., 2018, vol. 46, p. 2699. https://doi.org/10.1093/nar/gky092

  67. Vogel, C., Bashton, M., Kerrison, N.D., Chothia, C., and Teichmann, S.A., Structure, function and evolution of multidomain proteins, Curr. Opin. Struct. Biol., 2004, vol. 14, pp. 208–216.

    Article  CAS  PubMed  Google Scholar 

  68. Walsh, B.J.C., Wang, J., Edmonds, K.A., Palmer, L.D., Zhang, Y., Trinidad, J.C., Skaar, E.P., and Giedroc, D.P., The response of Acinetobacter baumannii to hydrogen sulfide reveals two independent persulfide-sensing systems and a connection to biofilm regulation, mBio, 2020, vol. 11, p. e01254-20.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang, W.Q., Sun, J.P., and Zhang, Z.Y., An overview of the protein tyrosine phosphatase superfamily, Curr. Top Med. Chem., 2003, vol. 3, pp. 739–748.

    Article  CAS  PubMed  Google Scholar 

  70. Wang, S.W., Bitbol, A.F., and Wingreen, N.S., Revealing evolutionary constraints on proteins through sequence analysis, PLoS Comput. Biol., 2019, vol. 15, p. e1007010. https://doi.org/10.1371/journal.pcbi.1007010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weiner 3rd, J. and Bornberg-Bauer, E., Evolution of circular permutations in multidomain proteins, Mol. Biol. Evol., 2006, vol. 23, pp. 734–743.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by an Early Career Research grant (ECR/2016/001598) to Dr. Rudra P. Saha, from DST-SERB, India.

Author information

Authors and Affiliations

Authors

Contributions

RPS, RR, SP, and SS analyzed the raw sequence data. RR, SP, and SS have done all the bioinformatics analyses. RPS conceived the study and participated in its design, analysis, and coordination. All authors contributed to the interpretation of the data and approved the final version of the manuscript.

Corresponding author

Correspondence to Rudra P. Saha.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rima Roy, Patra, S., Samanta, S. et al. Characterization of Multi-Domain Proteins in the ArsR/SmtB Family of Transcriptional Regulators. Biol Bull Russ Acad Sci 51, 66–77 (2024). https://doi.org/10.1134/S1062359023603294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023603294

Keywords:

Navigation