Skip to main content
Log in

miR-323b Attenuates Taxol-Resistance in Ovarian Cancer Cells by Targeting DDX53

  • CELL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Here, we first investigated the role of DDX53 on drug resistance and metastatic features of parental A2780, OVCAR3, and taxol-resistant A2780TR, OVCAR3TR ovarian cancer cells. As expected, DDX53 expression in A2780TR and OVCAR3TR was significantly increased compared to A2780 and OVCAR3. A2780TR and OVCAR3TR showed a stronger ability for migration, invasion, and proliferation compared with parental A2780 and OVCAR3. Meanwhile, MDR 1, known as the gene responsible for drug efflux, was significantly enhanced in A2780TR and OVCAR3TR. Furthermore, we identified miR-323b, a novel miRNA-targeting DDX53, using computational prediction software (miRDB, TargetScan, and miRmap) and investigated the effect of DDX53/miR-323b axis on drug resistance, migration, and invasion. miR-323b expression was decreased in A2780TR and OVCAR3TR. miR-323b also inhibited the expression of DDX53 and MDR1. Knockdown of miR-323b or overexpression of DDX53 induced taxol resistance, and increased invasion and migration in A2780 and OVCAR3. Conversely, enforced expression of miR-323b or knockdown of DDX53 promoted taxol susceptibility and decreased the metastatic potential of A2780TR and OVCAR3TR. Taken together, our results suggested that the regulatory mechanism between miR-323b and DDX53 could be provided as a novel strategy for treating ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA—Cancer J. Clin., 2018, vol. 68, pp. 394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Cho, B., Lee, H., Jeong, S., Bang, Y.J., Lee, H.J., Hwang, K.S., Kim, H.Y., Lee, Y.S., and Jeoung, D., Promoter hypomethylation of a novel cancer/testis antigen gene CAGE is correlated with its aberrant expression and is seen in premalignant stage of gastric carcinoma, Biochem. Biophys. Res. Commun., 2003, vol. 307, pp. 52–63. https://doi.org/10.1016/S0006-291X(03)01121-5

    Article  CAS  PubMed  Google Scholar 

  3. Daniel, E., Josefina, M., Olga, B., Antonio, M., Ignacio, P., Cristina, A., et al., Circulating microRNAs in early breast cancer patients and its association with lymph node metastases, Front. Oncol., 2021, vol. 11, pp. 1–24. https://doi.org/10.3389/fonc.2021.627811

    Article  CAS  Google Scholar 

  4. Dixon-McIver, A., East, P., Mein, C.A., Cazier, J.B., Molloy, G., Chaplin, T., Andrew Lister, T., Young, B.D., and Debernardi, S., Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia, PLoS One, 2008, vol. 3, p. e2141. https://doi.org/10.1371/journal.pone.0002141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fan, J.M., Zheng, Z.R., Zeng, Y.M., and Chen, X.Y., MiR-323-3p Targeting transmembrane protein with EGF-like and 2 follistatin domain (TMEFF2) inhibits human lung cancer A549 cell apoptosis by regulation of AKT and ERK signaling pathways, Med. Sci. Monit., 2020, vol. 3, p. e919454. https://doi.org/10.12659/MSM.919454

    Article  Google Scholar 

  6. Gao, Q. and Zheng, J., microRNA-323 upregulation promotes prostate cancer growth and docetaxel resistance by repressing p73, Biomed. Pharmacother., 2018, vol. 97, pp. 528–534. https://doi.org/10.1016/j.biopha.2017.10.040

    Article  CAS  PubMed  Google Scholar 

  7. Giulia, F., Claudia, C., Alessandra, F., Claudia, C., Venturina, S., and Daniela, B., Caspase-8: a novel target to overcome resistance to chemotherapy in glioblastoma, Int. J. Mol. Sci., 2018, vol. 19, pp. 3798–3811. https://doi.org/10.3390/ijms19123798

    Article  CAS  Google Scholar 

  8. Gonzalez-Vallinas, M., Rodriguez-Paredes, M., Albrecht, M., et al. Epigenetically regulated chromosome 14q32 miRNA cluster induces metastasis and predicts poor prognosis in lung adenocarcinoma patients, Mol. Cancer Res., 2018, vol. 16, pp. 390–402. https://doi.org/10.1158/1541-7786.MCR-17-0334

    Article  CAS  PubMed  Google Scholar 

  9. Izabela, K., Ranadip, M., Sven, B., and Klaus, S., The role of caspase-8 in the tumor microenvironment of ovarian cancer, Cancer Metastasis Rev., 2021, vol. 40, pp. 303–318. https://doi.org/10.1007/s10555-020-09935-1

    Article  CAS  Google Scholar 

  10. Jo, H., Shim, K., and Jeoung, D., Potential of the miR-200 family as a target for developing anti-cancer therapeutics, Int. J. Mol. Sci., 2022, vol. 23, pp. 5881–5899. https://doi.org/10.3390/ijms23115881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kang, K.T., Kwon, Y.W., Kim, D.K., Lee, S.I., Kim, K.H., Suh, D.S., and Kim, J.H., TRRAP stimulates the tumorigenic potential of ovarian cancer stem cells, BMB Rep., 2018, vol. 51, pp. 514–519. https://doi.org/10.5483/BMBRep.2018.51.10.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, Y., Park, H., and Jeoung, D., CAGE, a cancer/testis antigen, induces c-FLIP(L) and Snail to enhance cell motility and increase resistance to an anti-cancer drug, Biotechnol. Lett., 2009, vol. 31, pp. 945–952. https://doi.org/10.1007/s10529-009-9981-9

    Article  CAS  PubMed  Google Scholar 

  13. Kim, Y., Park, H., Park, D., Lee, Y.S., Choe, J.H., Kim, Y.M., and Jeoung, D., Cancer/testis antigen CAGE exerts negative regulation on p53 expression through HDAC2 and confers resistance to anti-cancer drugs, J. Biol. Chem., 2010, vol. 285, pp. 25957–25968. https://doi.org/10.1074/jbc.M109.095950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, Y., Park, D., Kim, H., Choi, M., Lee, H., Lee, Y.S., Jeoung, D., et al., miR-200b and cancer/testis antigen CAGE form a feedback loop to regulate the invasion and tumorigenic and angiogenic responses of a cancer cell line to microtubule-targeting drugs, J. Biol. Chem. 2013, vol. 288, pp. 36502–36518. https://doi.org/10.1074/jbc.M113.502047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, Y., Kim, H., Park, D., and Jeoung, D., miR-335 Targets SIAH2 and confers sensitivity to anti-cancer drugs by increasing the expression of HDAC3, Mol. Cells. 2015, vol. 38, pp. 562–572. https://doi.org/10.14348/molcells.2015.0051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, Y., Kim, H., Park, D., Han, M., Kim, Y.M., and Jeoung, D., miR-217 and CAGE form feedback loop and regulates the response to anti-cancer drugs through EGFR and HER2, Oncotarget, 2016, vol. 7, pp. 10297–10321. https://doi.org/10.18632/oncotarget.7185

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim, Y., Kim, H., Park, D., Lee, Y.S., Lee, J., and Jeoung, D., The pentapeptide Gly–Thr–Gly–Lys–Thr confers sensitivity to anti-cancer drugs by inhibition of CAGE binding to GSK3β and decreasing the expression of cyclinD1, Oncotarget, 2017, vol. 8, pp. 13632–13651. https://doi.org/10.18632/oncotarget.14621

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu, J., Jiang, Y., Wan, Y., Zhou, S., Thapa, S., and Cheng, W., MicroRNA‑665 suppresses the growth and migration of ovarian cancer cells by targeting HOXA10, Mol. Med. Rep., 2018, vol.18, pp. 2661–2668. https://doi.org/10.3892/mmr.2018.9252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meng, Y., Quan, L., and Liu, A., Identification of key microRNAs associated with diffuse large B-cell lymphoma by analyzing serum microRNA expressions, Gene, 2018, vol. 642, pp. 205–211. https://doi.org/10.1016/j.gene.2017.11.022

    Article  CAS  PubMed  Google Scholar 

  20. Nag, S., Aggarwal, S., Rauthan, A., and Warrier, N., Maintenance therapy for newly diagnosed epithelial ovarian cancer—a review, J. Ovarian Res., 2022, vol. 15, pp. 88–106. https://doi.org/10.1186/s13048-022-01020-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park, D., Kim, H., Kim, Y., and Jeoung, D., miR-30a regulates the expression of CAGE and p53 and regulates the response to anti-cancer drugs, Mol. Cells, 2016, vol. 39, pp. 299–309. https://doi.org/10.14348/molcells.2016.2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park, S.Y., Kim, W.J., Byun, J.H., Lee, J.J., Jeoung, D., Park, S.T., and Kim, Y., Role of DDX53 in taxol-resistance of cervix cancer cells in vitro, Biochem. Biophys. Res. Commun., 2018, vol. 506, pp. 641–647. https://doi.org/10.1016/j.bbrc.2018.10.145

    Article  CAS  PubMed  Google Scholar 

  23. Pokhriyal, R., Hariprasad, R., Kumar, L., and Hariprasad, G., Chemotherapy resistance in advanced ovarian cancer patients, Biomark. Cancer, 2019, vol. 1 pp. 1–19. https://doi.org/10.1177/1179299X19860815

    Article  Google Scholar 

  24. Qiu, S., Lin, S., Feng, Y., Tan, Y., and Peng, Y., Interactions of miR-323/miR-326/miR-329 and miR-130a/miR-155/miR-210 as prognostic indicators for clinical outcome of glioblastoma patients, J. Transl. Med., 2013, vol. 11, pp. 10–21. https://doi.org/1186/1479-5876-11-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, C., Liu, P., Wu, H., Liu, Y., Liu, Z., and Gou, S., MicroRNA-323-3p inhibits cell invasion and metastasis in pancreatic ductal adenocarcinoma via direct suppression of SMAD2 and SMAD3, Oncotarget, 2016, vol. 7, pp. 14912–14924. https://doi.org/10.18632/oncotarget.7482

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xian, Z., Xinying, Y., Ming, C., Shaolie, Z., Jinyuan, L., Shaoqiang, L., et al., ST3Gal3 confers paclitaxel‑mediated chemoresistance in ovarian cancer cells by attenuating caspase‑8/3 signaling, Mol. Med. Rep., 2019, vol. 20, pp. 4499–4506. https://doi.org/10.3892/mmr.2019.10712

    Article  CAS  Google Scholar 

  27. Xie, L., Yao, Z., Zhang, Y., et al., Deep RNA sequencing reveals the dynamic regulation of miRNA, lncRNAs, and mRNAs in osteosarcoma tumorigenesis and pulmonary metastasis, Cell Death Dis., 2018, vol. 9, pp. 772–788. https://doi.org/10.1038/s41419-018-0813-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, S., Fu, G.-B., Tao, Z., Ouyang, J., Kong, F., Jiang, B.-H., et al., MiR-497 decreases cisplatin resistance in ovarian cancer cells by targeting mTOR/P70S6K1, Oncotarget, 2015, vol. 6, pp. 26457–26471. https://doi.org/10.18632/oncotarget.4762

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zeng, F., Xue, M., Xiao, T., Li, Y., Xiao, S., Jiang, B., and Ren, C., MiR-200b promotes the cell proliferation and metastasis of cervical cancer by inhibiting FOXG1, Biomed. Pharmacother., 2019, vol. 79, pp. 294–301. https://doi.org/10.1016/j.biopha.2016.02.033

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dooil Jeoung (Kangwon National University) for providing plasmid constructs.

Funding

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07043498 to Youngmi Kim) and by the grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant number: HR21C0198 to Jae Jun Lee). This research also was supported by Hallym University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. J. Lee or Y. Kim.

Ethics declarations

The authors declare no conflicts of interest.

This article does not contain any studies with human participants performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, J.J. & Kim, Y. miR-323b Attenuates Taxol-Resistance in Ovarian Cancer Cells by Targeting DDX53. Biol Bull Russ Acad Sci 50, 739–748 (2023). https://doi.org/10.1134/S1062359023601374

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023601374

Keywords:

Navigation