Skip to main content
Log in

Store-Operated Calcium Channel and Inositol Triphosphate Receptor Calcium Channel Hyperactivation Inhibits Hepatocyte Autophagy to Promote Nonalcoholic Fatty Liver Disease

  • CELL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Previously, we demonstrated that store-operated calcium channel (SOCC) and inositol triphosphate receptor (IP3R) calcium channel upregulation inhibits autophagy via (TRPC1/IP3R)/ERK/(FOXO/mTORC1) signaling pathways to promote nonalcoholic fatty liver disease (NAFLD) in vitro; however, it remains unclear whether this mechanism exists in vivo. In this study, We observed that Lee’s Index, body mass index, plasma lipid indices, and hepatic triglyceride and total cholesterol content were increased in high-fat diet(HFD)-fed mice compared to normal diet(ND)-fed mice, whereas hepatocytes from HFD-fed mice showed macrovesicular steatosis and hepatocellular ballooning. The levels of SOCC and IP3R channel proteins such as calcium release-activated calcium channel protein 1, stromal interaction molecule 1, transient receptor potential canonical 1 (TRPC1) and IP3R were markedly increased in hepatocytes from HFD-fed mice compared to those from ND-fed mice, suggesting calcium channels over-activation. The levels of key proteins such as extracellular regulated protein kinases 1/2 (ERK1/2), phosphorylated(p)-forkhead/winged helix O 3 (FOXO3), p-tuberous sclerosis 2, p-ribosomal protein S6, and p-Unc-51 like autophagy activating kinase 1 in (TRPC1/IP3R)/ERK/(FOXO/mTORC1) signaling pathways were increased in HFD-fed mice, whereas autophagy-related gene 12 (ATG12) expression was downregulated, indicating FOXO signaling inhibition and mTORC1 signaling activation. Furthermore, the levels of autophagy-related proteins such as microtubule-associated protein 1-light chain 3 B and Yeast ATG 6 homolog were decreased in HFD-fed mice, suggesting autophagy inhibition. Importantly calcium channel blockers (CCBs) reversed HFD-induced abnormal changes in mice fed with HFD + CCB. Taken together, these results indicated that SOCC and IP3R upregulation and subsequent increased cytoplasmic calcium signaling inhibit hepatocyte autophagy via (TRPC1/IP3R)/ERK/(FOXO/mTORC1) signaling, thus leading to lipid droplet accumulation and NAFLD in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

DATA AVAILABILITY STATEMENT

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

REFERENCES

  1. Allaire, M., Rautou, P.E., Codogno, P., and Lotersztajn, S., Autophagy in liver diseases: time for translation?, J. Hepatol., 2019, vol. 70, pp. 985–998. https://doi.org/10.1016/j.jhep.2019.01.026

    Article  PubMed  Google Scholar 

  2. Alves-Bezerra, M. and Cohen, D.E., Triglyceride metabolism in the liver, Compr. Physiol., 2017, vol. 8, pp. 1–8. https://doi.org/10.1002/cphy.c170012

    Article  PubMed  PubMed Central  Google Scholar 

  3. Araujo-Silva, V.C., Santos-Silva, A., Lourenço, A.S., Barros-Barbosa, C.M., Moraes-Souza, R.Q., Soares, T.S., Karki, B., Paula, V.G., Sinzato, Y.K., Damasceno, D.C., and Volpato, G.T., Congenital anomalies programmed by maternal diabetes and obesity on offspring of rats, Front. Physiol., 2021, vol. 12, p. 701767. https://doi.org/10.3389/fphys.2021.701767

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barritt, G.J., Litjens, T.L., Castro, J., Aromataris, E., and Rychkov, G.Y., Store-operated Ca2+ channels and microdomains of Ca2+ in liver cells, Clin. Exp. Pharmacol. Physiol., 2009, vol. 36, pp. 77–83. https://doi.org/10.1111/j.1440-1681.2008.05095.x

    Article  CAS  PubMed  Google Scholar 

  5. Bavencoffe, A., Zhu, M.X., and Tian, J.B., New aspects of the contribution of ER to SOCE regulation: TRPC proteins as a link between plasma membrane ion transport and intracellular Ca2+ stores, Adv. Exp. Med. Biol., 2017, vol. 993, pp. 239–255. https://doi.org/10.1007/978-3-319-57732-6_13

    Article  CAS  PubMed  Google Scholar 

  6. Bedossa, P., Pathology of non-alcoholic fatty liver disease, Liver Int., 2017, vol. 1, pp. 85–89. https://doi.org/10.32074/1591-951X-242

    Article  Google Scholar 

  7. Berridge, M.J., Bootman, M.D., and Roderick, H.L., Calcium signalling: dynamics, homeostasis and remodelling, Nat. Rev. Mol. Cell Biol., 2003, vol. 4, pp. 517–529. https://doi.org/10.1038/nrm115511

  8. Buzzetti, E., Pinzani, M., and Tsochatzis, E.A., The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD), Metabolism, 2016, vol. 65, pp. 1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  9. Cárdenas, C., Juretić, N., Bevilacqua, J.A., García, I.E., Hartley, R.F.R., Taratuto, A.L., Gejman, R., Riveros, N., Molgó, J., and Jaimovich, E., Abnormal distribution of inositol 1,4,5-trisphosphate receptors in human muscle can be related to altered calcium signals and gene expression in Duchenne dystrophy-derived cells, FASEB J., 2010, vol. 24, pp. 3210–3221. https://doi.org/10.1096/fj.09-152017

    Article  CAS  PubMed  Google Scholar 

  10. Chang, Y., Roy, S., and Pan, Z., Store operated calcium channels as drug target in gastroesophageal cancers, Front. Pharmacol., 2021, vol. 12, p. 668730. https://doi.org/10.3389/fphar.2021.668730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chatrath, H., Vuppalanchi, R., and Chalasani, N., Dyslipidemia in patients with nonalcoholic fatty liver disease, Semin. Liver Dis., 2012, vol. 32, pp. 22–29. https://doi.org/10.1055/s-0032-1306423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deprince, A., Haas, J.T., and Staels, B., Dysregulated lipid metabolism links NAFLD to cardiovascular disease, Mol. Metab., 2020, vol. 42, p. 101092. https://doi.org/10.1016/j.molmet.2020.101092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ehrlich, L.S., Medina, G.N., and Carter, C.A., Sprouty2 regulates PI(4,5)P2/Ca2+ signaling and HIV-1 Gag release, J. Mol. Biol., 2011, vol. 410, pp. 716–725. https://doi.org/10.1016/j.jmb.2011.04.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fabbrini, E. and Magkos, F., Hepatic steatosis as a marker of metabolic dysfunction, Nutrients, 2015, vol. 7, pp. 4995–5019. https://doi.org/10.3390/nu7064995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fitzwalter, B.E. and Thorburn, A., FOXO3 links autophagy to apoptosis, Autophagy, 2018, vol. 14, pp. 1467–1468. https://doi.org/10.1080/15548627.2018.1475819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gastaldelli, A., Insulin resistance and reduced metabolic fexibility: cause or consequence of NAFLD?, Clin. Sci. (London), 2017, vol. 131, pp. 2701–2704. https://doi.org/10.1042/CS20170987

    Article  CAS  Google Scholar 

  17. Hazari, Y., Bravo-San Pedro, J.M., Hetz, C., Galluzzi, L., and Kroemer, G., Autophagy in hepatic adaptation to stress, J. Hepatol., 2020, vol. 72, pp. 183–196. https://doi.org/10.1016/j.jhep.2019.08.026

    Article  CAS  PubMed  Google Scholar 

  18. Hiani, Y.El., Ahidouch, A., Lehen’kyi, V., Hague, F., Gouilleux, F., Mentaverri, R., Kamel, S., Lassoued, K., Brûlé, G., and Ouadid-Ahidouch, H., Extracellular signal-regulated kinases 1 and 2 and TRPC1 channels are required for calcium-sensing receptor-stimulated MCF-7 breast cancer cell proliferation, Cell Physiol. Biochem., 2009, vol. 23, pp. 335–346. https://doi.org/10.1159/000218179

    Article  CAS  PubMed  Google Scholar 

  19. Hoogeveen-Westerveld, M., Ekong, R., Povey, S., Dunnen, J.T., Metcalfe, K., Vallee, S., Krueger, S., Bergoffen, J., Shashi, V., Elmslie, F., Kwiatkowski, D., Sampson, J., Vidales, C., Dzarir, J., Garcia-Planells, J., Dies, K., Maat-Kievit, A., Ouweland, A., Halley, D., and Nellist, M., Functional assessment of TSC2 variants identified in individuals with tuberous sclerosis complex, Hum. Mutat., 2013, vol. 34, pp. 167–175. https://doi.org/10.1002/humu.22202

    Article  CAS  PubMed  Google Scholar 

  20. Jahn, D., Kircher, S., Hermanns, H.M., and Geier, A., Animal models of NAFLD from a hepatologist’s point of view, Biochim. Biophys. Acta, Mol. Basis Dis., 2019, vol. 1865, pp. 943–953. https://doi.org/10.1016/j.bbadis.2018.06.023

    Article  CAS  Google Scholar 

  21. Jin, C., Kumar, P., Gracia-Sancho, J., and Dufour, J.F., Calcium transfer between endoplasmic reticulum and mitochondria in liver diseases, FEBS Lett., 2021, vol. 595, pp. 1411–1421. https://doi.org/10.1002/1873-3468.14078

    Article  CAS  PubMed  Google Scholar 

  22. Katzmann, J.L. and Laufs, U., New insights in the control of low-density lipoprotein cholesterol to prevent cardiovascular disease, Curr. Cardiol. Rep., 2019, vol. 21, p. 69. https://doi.org/10.1007/s11886-019-1159-z

    Article  PubMed  Google Scholar 

  23. Kleiner, D.E., Brunt, E.M., Van Natta, M., Behling, C., Contos, M.J., Cummings, O.J., Ferrell, L.D., Liu, Y.C., Torbenson, M.S., Unalp-Arida, A., Yeh, M., McCullough, A.J., and Sanyal, A.J., Design and validation of a histological scoring system for nonalcoholic fatty liver disease, Hepatology, 2005, vol. 41, pp. 1313–1321. https://doi.org/10.1002/hep.20701

    Article  PubMed  Google Scholar 

  24. Lee, D. and Hong, J.H., Ca2+ signaling as the untact mode during signaling in metastatic breast cancer, Cancers (Basel), 2021, vol. 23, p. 1473. https://doi.org/10.3390/cancers13061473

    Article  CAS  Google Scholar 

  25. Liang, X.J., Zhang, N., Pan, H.M., Xie, J.S., and Han, W.D., Development of store-operated calcium entry-targeted compounds in cancer, Front. Pharmacol., 2021, vol. 12, p. 688244. https://doi.org/10.3389/fphar.2021.688244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, Q.H., Zhu, P., Liu, S.S., Tang, M.Y., Wang, Y.X., Tian, Y., Jin, Z., Li, D., and Yan, D.M., NMAAP1 maintains M1 phenotype in macrophages through binding to IP3R and activating calcium-related signaling pathways, Protein Pept. Lett., 2019, vol. 26, pp. 751–757. https://doi.org/10.2174/0929866526666190503105343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, W. and Zhang, L., Regulation of ATG and autophagy initiation, Adv. Exp. Med. Biol., 2019, vol. 1206, pp. 41–65. https://doi.org/10.1007/978-981-15-0602-4_2

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y.B., Yang, T., Wang, J.X., and Zhao, X.F., The steroid hormone 20-hydroxyecdysone regulates the conjugation of autophagy-related proteins 12 and 5 in a concentration and time-dependent manner to promote insect midgut programmed cell death, Front. Endocrinol. (Lausanne), 2018, vol. 9, p. 28. https://doi.org/10.3389/fendo.2018.00028

    Article  PubMed  Google Scholar 

  29. Ma, L., Chen, Z.B., Erdjument-Bromage, H., Tempst, P., and Pandolfi, P.P., Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis, Cell, 2005, vol. 121, pp. 179–193. https://doi.org/10.1016/j.cell.2005.02.031

    Article  CAS  PubMed  Google Scholar 

  30. Ma, X.W., Qian, H., Chen, A., Ni, H.M., and Ding, W.X., Perspectives on mitochondria–ER and mitochondria–lipid droplet contact in hepatocytes and hepatic lipid metabolism, Cells, 2021, vol. 10, p. 2273. https://doi.org/10.3390/cells10092273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morales-Lázaro, S.L. and Rosenbaum, T., Chapter five, multiple mechanisms of regulation of transient receptor potential ion channels by cholesterol, Curr. Top. Membr., 2017, vol. 80, pp. 139–161. https://doi.org/10.1016/bs.ctm.2017.05.007

    Article  CAS  PubMed  Google Scholar 

  32. Nasiri-Ansari, N., Nikolopoulou, C., Papoutsi, K., Kyrou, I., Mantzoros, C.S., Kyriakopoulos, G., Chatzigeorgiou, A., Kalotychou, V., Randeva, M.S., Chatha, K., Kontzoglou, K., Kaltsas, G., Papavassiliou, A.G., Randeva, H.S., and Kassi, E., Empagliflozin attenuates non-alcoholic fatty liver disease (NAFLD) in high fat diet fed ApoE mice by activating autophagy and reducing ER stress and apoptosis, Int. J. Mol. Sci., 2021, vol. 22, p. 818. https://doi.org/10.3390/ijms22020818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ong, H.L. and Ambudkar, I.S., STIM-TRP pathways and microdomain organization: Contribution of TRPC1 in store-operated Ca2+ entry: impact on Ca2+ signaling and cell function, Adv. Exp. Med. Biol., 2017, vol. 993, pp. 159–188. https://doi.org/10.1007/978-3-319-57732-6_9

    Article  CAS  PubMed  Google Scholar 

  34. Onorati, A.V., Dyczynski, M., Ojha, R., and Amaravadi, R.K., Targeting autophagy in cancer, Cancer, 2018, vol. 124, pp. 3307–3318. https://doi.org/10.1002/cncr.31335

    Article  PubMed  Google Scholar 

  35. Pérez-Méndez, Ó., Pacheco, H.G., Martínez-Sánchez, C., and Franco, M., HDL-cholesterol in coronary artery disease risk: function or structure?, Clin. Chim. Acta, 2014, vol. 429, pp. 111–122. https://doi.org/10.1016/j.cca.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  36. Rabanal-Ruiz, Y., Otten, E.G., and Korolchuk, V.I., mTORC1 as the main gateway to autophagy, Essays Biochem., 2017, vol. 61, pp. 565–584. https://doi.org/10.1042/EBC20170027

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ren, H.H., Wang, D., Zhang, L., Kang, X.N., Li, Y.L., Zhou, X.R., and Yuan, G., Catalpol induces autophagy and attenuates liver steatosis in ob/ob and high-fat diet-induced obese mice, Aging (Albany NY), 2019, vol. 11, pp. 9461–9477. https://doi.org/10.18632/aging.102396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sampattavanich, S., Steiert, B., Kramer, B.A., Gyori, B.M., Albeck, J.G., and Sorger, P.K., Encoding growth factor identity in the temporal dynamics of FOXO3 under the combinatorial control of ERK and AKT kinases, Cell Syst., 2018, vol. 6, pp. 664–678. https://doi.org/10.1016/j.cels.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Secondo, A., Petrozziello, T., and Tedeschi, V., ORAI1/STIM1 interaction intervenes in stroke and in neuroprotection induced by ischemic preconditioning through store-operated calcium entry, Stroke, 2019, vol. 50, pp. 1240–1249. https://doi.org/10.1161/STROKEAHA.118.024115

    Article  CAS  PubMed  Google Scholar 

  40. Seebacher, F., Zeigerer, A., Kory, N., and Krahmer, N., Hepatic lipid droplet homeostasis and fatty liver disease, Semin. Cell Dev. Biol., 2020, vol. 108, pp. 72–81. https://doi.org/10.1016/j.semcdb.2020.04.011

    Article  CAS  PubMed  Google Scholar 

  41. Stefanetti, R.J., Voisin, S., Russell, A., and Lamon, S., Recent advances in understanding the role of FOXO3, F1000Res, 2018, vol. 7, F1000 Faculty Rev-1372. https://doi.org/10.12688/f1000research.15258.1

  42. Sun, Y., Liu, W.Z., Liu, T., Feng, X., Yang, N., and Zhou, H.F., Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis, J. Recept. Signal. Transduct. Res., 2015, vol. 35, pp. 600–604. https://doi.org/10.3109/10799893.2015.1030412

    Article  CAS  PubMed  Google Scholar 

  43. Taher, T.E., Bystrom, J., Mignen, O., Pers, J.O., Renaudineau, Y., and Mageed, R.A., CD5 and B lymphocyte responses: multifaceted effects through multitudes of pathways and channels, Cell Mol. Immunol., 2020, vol. 17, pp. 1201–1203. https://doi.org/10.1038/s41423-020-0490-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang, B.D., Xia, X., Lv, X.F., Yu, B.X., Yuan, J.N., Mai, X.Y., Shang, J.Y., Zhou, J.G., Liang, S.J., and Pang, R.P., Inhibition of Orai1-mediated Ca2+ entry enhances chemosensitivity of HepG2 hepatocarcinoma cells to 5-fluorouracil, J. Cell Mol. Med., 2017, vol. 21, pp. 904–915. https://doi.org/10.1111/jcmm.13029

    Article  CAS  PubMed  Google Scholar 

  45. Tang, L., Zeng, Z.Z., Zhou, Y.H., Wang, B.K., Zou, P., Wang, Q., Ying, J.F., Wang, F., Li, X., Xu, S.J., Zhao, P.W., and Li, W.F., Bacillus amyloliquefaciens SC06 induced AKT-FOXO signaling pathway-mediated autophagy to alleviate oxidative stress in IPEC-J2 cells, Antioxidants (Basel), 2021, vol. 10, p. 1545. https://doi.org/10.3390/antiox10101545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tang, M., Jiang, Y., Jia, H.Y., Patpur, B.K., Yang, B., and Li, J., Osteopontin acts as a negative regulator of autophagy accelerating lipid accumulation during the development of nonalcoholic fatty liver disease, Artif. Cells Nanomed. Biotechnol., 2020, vol. 48, pp. 159–168. https://doi.org/10.1080/21691401.2019.1699822

    Article  CAS  PubMed  Google Scholar 

  47. Thillaiappan, N.B., Chakraborty, P., Hasan, G., and Taylor, C.W., IP3 receptors and Ca2+ entry, Biochim. Biophys. Acta Mol. Cell Res., 2019, vol. 1866, pp. 1092–1100. https://doi.org/10.1016/j.bbamcr.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  48. Vicencio, J.M., Estrada, M., Galvis, D., Bravo, R., Contreras, A.E., Rotter, D., Szabadkai, G., Hill, J. A., Rothermel, B.A., Jaimovich, E., and Lavandero, S., Anabolic androgenic steroids and intracellular calcium signaling: a mini review on mechanisms and physiological implications, Mini Rev. Med. Chem., 2011, vol. 11, pp. 390–398. https://doi.org/10.2174/138955711795445880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Viecili, P.R.N., Silva, B.D., Hirsch, G.E, Porto, F.G., Parisi, M.M., Castanho, A.R., Wender, M., and Klafke, J.Z., Triglycerides Revisited to the Serial, Adv. Clin. Chem., 2017, vol. 80, рр. 1–44. https://doi.org/10.1016/bs.acc.2016.11.001

  50. Wang, F., Li, H., Yan, X.G., Zhou, Z.W., Yi, Z.G., He, Z.X., Pan, S.T., Yang, Y.X., Wang, Z.Z., Zhang, X.J., Yang, T.X., Qiu, J.X., and Zhou, S.F., Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells, Drug Des. Dev. Ther., 2015, vol. 9, pp. 575–601. https://doi.org/10.2147/DDDT.S75221

    Article  CAS  Google Scholar 

  51. Wang, H.J., Liu, Y.M., Wang, D., Xu, Y.L., Dong, R.Q., Yang, Y.X., Lv, Q.X., Chen, X.G., and Zhang, Z.Q., The upstream pathway of mTOR-mediated autophagy in liver diseases, Cells, 2019, vol. 8, p. 1597. https://doi.org/10.3390/cells8121597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, X., Chen, H.S., Shao, X.F., Xiong, C.X., Hong, G.B., Chen, J.H., Li, X.L., You, X., Gao, P.C., Chen, Y.Y., Zou, Z.L., Ning, J., Xiao, H., Zou, H.Q., and Wei, L.X., Association of lipid parameters with the risk of chronic kidney disease: a longitudinal study based on populations in Southern China, Diabetes Metab. Syndr. Obes., 2020, vol. 13, pp. 663–670. https://doi.org/10.2147/DMSO.S229362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, X., Wei, Z., Jiang, Y., Meng, Z., and Lu, M., mTOR signaling: the interface linking cellular metabolism and hepatitis B virus replication, Virol. Sin., 2021, vol. 36, pp. 1303–1314. https://doi.org/10.1007/s12250-021-00450-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wasilewska, N. and Lebensztejn, D.M., Non-alcoholic fatty liver disease and lipotoxicity, Clin. Exp. Hepatol., 2021, vol. 7, pp. 1–6. https://doi.org/10.5114/ceh.2021.104441

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wu, W.K.K., Zhang, L., and Chan, M.T.V., Autophagy, NAFLD and NAFLD-related HCC, Adv. Exp. Med. Biol., 2018, vol. 1061, pp. 127–138. https://doi.org/10.1007/978-981-10-8684-7_10

    Article  CAS  PubMed  Google Scholar 

  56. Xiang, H.G., Zhang, J.F., Lin, C.C., Zhang, L., Liu, B., and Ouyang, L., Targeting autophagy-related protein kinases for potential therapeutic purpose, Acta Pharm. Sin. B, 2020, vol. 10, pp. 569–581. https://doi.org/10.1016/j.apsb.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  57. Xue, W.J., Wang, J.R., Jiang, W., Shi, C.J., Wang, X.H., Huang, Y., and Hu, C.M., Caveolin-1 alleviates lipid accumulation in NAFLD associated with promoting autophagy by inhibiting the Akt/mTOR pathway, Eur. J. Pharmacol., 2020, vol. 871, p. 172910. https://doi.org/10.1016/j.ejphar.2020.172910

    Article  CAS  PubMed  Google Scholar 

  58. Yao, H., Duan, M., Yang, L., and Buch, S., Platelet-derived growth factor-BB restores human immunodeficiency virus Tat-cocaine-mediated impairment of neurogenesis: role of TRPC1 channels, J. Neurosci., 2012, vol. 32, pp. 9835–9847. https://doi.org/10.1523/JNEUROSCI.0638-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yao, H.H., Peng, F., Fan, Y., Zhu, X., Hu, G., and Buch, S.J., TRPC channel-mediated neuroprotection by PDGF involves Pyk2/ERK/CREB pathway, Cell Death Differ., 2009, vol. 16, pp. 1681–1693. https://doi.org/10.1038/cdd.2009.108

    Article  CAS  PubMed  Google Scholar 

  60. Yao, S., Fan, L.Y., and Lam, E.W., The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance, Semin. Cancer Biol., 2018, vol. 50, pp. 77–89. https://doi.org/10.1016/j.semcancer.2017.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, B.B., Li, M., Zou, Y., Guo, H., Zhang, B.D., Xia, C., Zhang, H.Y., Yang, W., and Xu, C., NFκB/Orai1 facilitates endoplasmic reticulum stress by oxidative stress in the pathogenesis of non-alcoholic fatty liver disease, Front. Cell Dev. Biol., 2019, vol. 7, p. 202. https://doi.org/10.3389/fcell.2019.00202

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang, C.X., Liu, Y., Zhang, Y.F., Wang, X.X., Zhang, T.L., and Ding, J.P., Molecular basis for the functions of dominantly active Y35N and inactive D60K Rheb mutants in mTORC1 signaling, J. Mol. Cell Biol., 2020, vol. 12, pp. 741–744. https://doi.org/10.1093/jmcb/mjaa025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, L., Zhang, Y.F., Jiang, Y.Q., Dou, X.B., Li, S.T., Chai, H., Qian, Q.Y., and Wang, M.J., Upregulated SOCC and IP3R calcium channels and subsequent elevated cytoplasmic calcium signaling promote nonalcoholic fatty liver disease by inhibiting autophagy, Mol. Cell Biochem., 2021, vol. 476, pp. 3163–3175. https://doi.org/10.1007/s11010-021-04150-0

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, Y., Li, K.D., Kong, A.Q., Zhou, Y., Chen, D.F., Gu, J., and Shi, H.F., Dysregulation of autophagy acts as a pathogenic mechanism of non-alcoholic fatty liver disease (NAFLD) induced by common environmental pollutants, Ecotoxicol. Environ. Saf., 2021, vol. 217, p. 112256. https://doi.org/10.1016/j.ecoenv.2021.112256

    Article  CAS  PubMed  Google Scholar 

  65. Zhong, W., Chebolu, S., and Darmani, N.A., Intracellular emetic signaling cascades by which the selective neurokinin type 1 receptor (NK1R) agonist GR73632 evokes vomiting in the least shrew (Cryptotis parva), Neurochem. Int., 2019, vol. 122, pp. 106–119. https://doi.org/10.1016/j.neuint.2018.11.012

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Elsevier Language Editing Services for their linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by the Department of Health of Zhejiang Province, China (grant no. 2022KY911); the Young and Middle-Aged Research Innovation Foundation of the Zhejiang Chinese Medical University, China (grant no. KC201921); and the Scientific Research and Cultivation Project of College of Life Sciences, Zhejiang Chinese Medical University, China (grant no. 2022BJ001).

Author information

Authors and Affiliations

Authors

Contributions

Ruirui Yang and Zhelan Zhao contributed equally to this work and should be considered co-first authors. Lin Zhang developed the idea and obtained the fund. Lin Zhang, Ruirui Yang, Zhelan Zhao, and Yesang Li designed the study, executed the experiments, analyzed the data, and drafted and wrote the manuscript. Yuanqing Jiang provided support and assistance in the writing of the manuscript. Hui Chai and Xiaobing Dou provided experimental resources and critically evaluated the manuscript.

Corresponding author

Correspondence to Lin Zhang.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All procedures and experiments were performed in accordance with all relevant guidelines and regulations including a protocol approved by the Animal Ethical and Welfare Committee of Zhejiang Chinese Medical University (ZCMU), Hangzhou, China (approval no. IACUC-20200608-05 of January 18, 2021) and in accordance with the ARRIVE guidelines (https://www.arriveguidelines.org).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruirui Yang, Zhao, Z., Li, Y. et al. Store-Operated Calcium Channel and Inositol Triphosphate Receptor Calcium Channel Hyperactivation Inhibits Hepatocyte Autophagy to Promote Nonalcoholic Fatty Liver Disease. Biol Bull Russ Acad Sci 50, 1093–1105 (2023). https://doi.org/10.1134/S1062359023600514

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023600514

Keywords:

Navigation