Skip to main content
Log in

In-silico Evaluation of Structurally Homologous Drosophila p53 with Human p53 to Identify Functional Differences for Future Therapeutic Research

  • GENETICS
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

p53 is a transcription factor, which is encoded by the TP53 gene in human. p53 regulates the cell cycle and functions as a tumour suppressor, thus, involved in preventing cancer. In vivo, analysis of p53 mechanisms in whole animal models are critical, alternatively Drosophila can be selected. Our present study worked on comparative and interactome profiling of p53 protein using PyMol and Haddock 2.4. The structural similarity resulted that p53 of Drosophila (Dmp53) is almost alike to that of human p53 (Hp53) protein. Hp53 interacting proteins were systematically docked and analyzed with Hp53 and Dmp53 both. Furthermore the associated complexes are analysed through Discovery Studio. The interactome study revealed better homologous interaction like human p53. Drosophila p53 exhibits characteristics that makes it a promising model for cancer research, bearing resemblance to human p53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

AVAILABILITY OF DATA AND MATERIALS

The data that supports the findings of this study are available in the supplementary material of this article.

REFERENCES

  1. Bourdon, J.C., Deguin-Chambon, V., Lelong, J.C., Dessen, P., May, P., Debuire, B., and May, E., Further characterisation of the p53 responsive element—identification of new candidate genes for trans-activation by p53, Oncogene, 1997, vol 14, pp. 85–94.

    Article  CAS  PubMed  Google Scholar 

  2. Canman, C.E., Lim, D.S., Cimprich, K.A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M.B., and Siliciano, J.D., Activation of the ATM kinase by ionizing radiation and phosphorylation of p53, Science, 1998, vol. 281, pp. 1677–1679.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Chakraborty, R., Li, Y., Zhou, L., and Golic, K.G., Corp regulates p53 in Drosophila melanogaster via a negative feedback loop, PLoS Genet., 2015, vol. 11, no. 7, p. e1005400.

    Article  PubMed  PubMed Central  Google Scholar 

  4. De Leo, A.B., Jay, G., Appella, E., Dubois, G.C., Law, L.W., and Old, L.J., Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 76, pp. 2420–2424.

    Article  ADS  Google Scholar 

  5. Edelman, J. and Nemunaitis J., Adenoviral p53 gene therapy in squamous cell cancer of the head and neck region, Curr. Opin. Mol. Ther., 2003, vol. 5, pp. 611—617.

    CAS  PubMed  Google Scholar 

  6. El-Deiry, W.S., Kern, S.E., Pietenpol, J.A., Kinzler, K.W., and Vogelstein, B., Definition of a consensus binding site for p53, Nat. Genet., 1992, vol. 1, pp. 45–49.

    Article  CAS  PubMed  Google Scholar 

  7. El-Deiry, W.S., Tokino, T., Velculescu, V.E, Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B., WAF1, a potential mediator of p53 tumor suppression, Cell, 1993, vol. 75, pp. 817–825.

    Article  CAS  PubMed  Google Scholar 

  8. Ferreira, C.G., Tolis, C., and Giaccone, G., p53 and chemosensitivity, Ann. Oncol., 1999 vol. 10, pp. 1011–1021.

    Article  CAS  PubMed  Google Scholar 

  9. Funk, W.D., Pak, D.T., Karas, R.H., Wright, W.E., and Shay, J.W., A transcriptionally active DNA binding site for humanp53 protein complexes, Mol Cell Biol., 1992, vol. 12, pp. 2866–2871.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hekmat-Nejad, M., You, Z., Yee, M.C., Newport, J.W., and Cimprich, K.A., Xenopus ATR is a replication dependent chromatin-binding protein required for the DNA replication checkpoint, Curr. Biol., 2006, vol. 10, pp. 1565–1573.

    Article  Google Scholar 

  11. Herzog, G., Joerger, A.C., Shmueli, M.D., Fersht, A.R., Gazit, E., and Segal, D., Evaluating Drosophila p53 as a model system for studying cancer mutations, J. Biol. Chem., 2012, vol. 287, no. 53, pp. 44330–44337. https://doi.org/10.1074/jbc.M112.417980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Isobe, M., Emanuel, B.S., Givol, D., Oren, M., and Croce, C.M., Localization of gene for human p53 tumour antigen to band 17p13, Nature, 1986, pp. 32084–32085.

  13. Kamijo, T., Weber, J.D., Zambetti, G., Zindy, F., Roussel, M.F., and Sherr, C.J., Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2, Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, no. 14, pp. 8292–8297. https://doi.org/10.1073/pnas.95.14.8292

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Kastan, M.B. et al., A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia, Cell, 1992 vol. 71, pp. 587–597. https://doi.org/10.1016/0092-8674(92)90593-2

    Article  CAS  PubMed  Google Scholar 

  15. Kress, M., May, E., Cassingena, R., and May, P., Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum, J. Virol., 1979, vol. 31, pp. 472–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lane D., p53 from pathway to therapy, Carcinogenesis, 2004, vol. 25, pp. 1077–1081.

    Article  CAS  PubMed  Google Scholar 

  17. Lane, D.P. and Crawford, L.V., T antigen is bound to a host protein in SV40-transformed cells, Nature, 1979, vol. 278, pp. 261–263.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Lane D.P., Cancer. p53, guardian of the genome, Nature, 1992, vol. 358, pp. 15–16.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Lee J.H. et al., In vivo p53 function is indispensable for DNA damage-induced apoptotic signaling in Drosophila, FEBS Lett., 2003, vol. 550, pp. 5–10.

    Article  CAS  PubMed  Google Scholar 

  20. Linzer D.I.H. and Levine A.J., Characterization of a 54 K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and in infected embryonal carcinoma cells, Cell, 1979, vol. 1, pp. 43–52.

    Article  Google Scholar 

  21. Lu, W.-J., Amatruda, J.F., and Abrams, J.M., p53 ancestry: gazing through an evolutionary lens, Nat. Rev. Cancer., 2009, vol. 9, pp. 758–762.

    Article  CAS  PubMed  Google Scholar 

  22. Matlashewski, G., Lamb, P., Pim, D., Peacock, J., Crawford, L., and Benchimol, S., Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene, EMBO J., 1984, vol. 3, pp. 3257–3262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Melero, J.A., Stitt, D.T., Mangel, W.F., and Carroll, R.B., Identification of new polypeptide species (48–55 K) immunoprecipitable by antiserum to purified large T antigen and present in simian virus 40-infected and transformed cells, J. Virol., 1979, vol. 93, pp. 466–480.

    Article  CAS  Google Scholar 

  24. Nakano, K. and Vousden, K.H., PUMA, anovelproapoptotic gene, is induced by p53, Mol. Cell, 2001, vol. 7, pp. 683–694.

    Article  CAS  PubMed  Google Scholar 

  25. Kern, S.E., Kinzler, K.W., Bruskin, A., Jarosz, D., Friedman, P., Prives, C., and Vogelstein, B., Identification of p53 as a sequence-specific DNA-binding protein, Science, 1991, vol. 252, pp. 1708–1711.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Rudrapatna, V.A., Cagan, R.L., and Das, T.K., Drosophila cancer models, Dev. Dyn., 2012, vol. 241, pp. 107–118.

    Article  CAS  PubMed  Google Scholar 

  27. Rutkowski, R., Hofmann, K., and Gartner, A., Phylogeny and function of the invertebrate p53 superfamily, Cold Spring Harb. Perspect. Biol., 2010, vol. 2, p. a001131.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sogame, N., Kim, M., and Abrams, J.M., Drosophila p53 preserves genomic stability by regulating cell death, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 4696–4701.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Soussi, T., Caron de Fromentel, C., and May, P., Structural aspects of the p53 protein in relation to gene evolution, Oncogene, 1990, vol. 5, pp. 945–952.

    CAS  PubMed  Google Scholar 

  30. Yang, A., Kaghad, M., Caput, D., and McKeon, F., On the shoulders of giants: p63, p73 and the rise of p53, Trends Genet., 2002, vol. 18, pp. 90–95.

    Article  PubMed  Google Scholar 

  31. Yetao Jin, Hunjoo Lee, Shelya X. Zeng, Mu-Shui Dai, and Hua Lu, MDM2 promotes p21waf1/cip1 proteasomal turnover independently of ubiquitylation, EMBO J., 2003, vol. 22, pp. 6365–6377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamamura, R., Ooshio, T., and Sonoshita, M., Tiny Drosophila makes giant strides in cancer research, Cancer Sci., 2021, vol 112, no. 2, pp. 505–514. https://doi.org/10.1111/cas.14747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Zundert, G.C.P., Rodrigues, J.P.G.L.M., Trellet, M., Schmitz, C., Kastritis, P.L., Karaca, E., Melquiond, A.S.J., van Dijk, M., de Vries S.J, and Bonvin A.M.J.J., The HADDO-CK2.2 webserver: user-friendly integrative modeling of biomolecular complexes, J. Mol. Biol., 2016, vol. 428, pp. 720–725.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Oriental Institute of Science and Technology in the frame of our Research Programme.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

The Study and Method development by A.S.P and B.B, material preparation, analyzing data by N.T, experiments performed A.S and S.M, interpreted the results B.B and A.S.P and manuscript is written by A.S.P.

Corresponding author

Correspondence to Anindya Sundar Panja.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This article does not contain studies with human or animal subjects performed by any of the authors that should be approved by Ethics Committee.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

10525_2024_9407_MOESM1_ESM.pdf

Supplementary Figs. 1–10. Representation of Bond interactome involving ATM, BCL2, CDK2, CDKN1, CHEK2, EP300, MDM2, MDM4, CREB and TP73 with Human p53 and Drosophila p53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nutan Tudu, Sarkar, A., Mondal, S. et al. In-silico Evaluation of Structurally Homologous Drosophila p53 with Human p53 to Identify Functional Differences for Future Therapeutic Research. Biol Bull Russ Acad Sci 50 (Suppl 3), S310–S316 (2023). https://doi.org/10.1134/S1062359021101738

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021101738

Keywords:

Navigation