Skip to main content
Log in

Biomedical Applications of Capillary Electrophoresis

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Biomedicine is one of the most rapidly evolving fields in medicine with a strong focus on diagnostics. Capillary electrophoresis (CE) is a separation technique widely used for determining concentrations of biologically active compounds, pharmaceuticals, microorganisms, and their metabolites in biological fluids. Today, CE is widely employed in the diagnosis of various diseases. Additionally, it has become an important tool in the pharmaceutical industry, especially for assessing the enantiopurity of drugs. The main advantages of CE include an ability of the automation and miniaturization of an analysis, compatibility with mass-spectrometric detection, use of small sample volumes (nanoliters), and the availability of the equipment and consumables. This review summarizes the key areas of CE application to biomedicine, including proteomic and metabolomic studies, and examines its prospects for the ultra-miniaturization and automation of enantiomeric analysis, including the use of microelectronics and microfluidic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Morani, M., Duc Mai, T., Krupova, Z., van Niel, G., Defrenaix, P., and Taverna, M., TrAC, Trends Anal. Chem., 2021, vol. 135, p. 116179. https://doi.org/10.1016/j.trac.2021.116179

    Article  CAS  Google Scholar 

  2. Phillips, T.M., Clinical Applications of Capillary Electrophoresis: Methods and Protocols, New York: Springer, 2019. https://doi.org/10.1007/978-1-4939-9213-3

  3. Seyfinejad, B. and Jouyban, A., J. Pharm. Biomed. Anal., 2022, vol. 221, p. 115059. https://doi.org/10.1134/S1061934820120084

    Article  CAS  PubMed  Google Scholar 

  4. Kartsova, L.A., Makeeva, D.V., and Bessonova, E.A., J. Anal. Chem., 2020, vol. 75, no. 12, p. 1497. https://doi.org/10.1134/S1061934820120084

    Article  CAS  Google Scholar 

  5. Ou, X., Chen, P., Huang, X., Li, S., and Liu, B-F., J. Sep. Sci., 2020, vol. 43, p. 258. https://doi.org/10.1002/jssc.201900758

    Article  CAS  PubMed  Google Scholar 

  6. Soga, T., Advances in capillary electrophoresis mass spectrometry for metabolomics, Trends Anal. Chem., 2023, vol. 158, p. 116883. https://doi.org/10.1016/j.trac.2022.116883

    Article  CAS  Google Scholar 

  7. Kartsova, L.A., Makeeva, D.V., Kravchenko, A.V., Moskvichev, D.O., and Polikarpova, D.A., TrAC, Trends Anal. Chem., 2021, vol. 134, p. 116110. https://doi.org/10.1016/j.trac.2020.116110

    Article  CAS  Google Scholar 

  8. Lothert, K., Eilts, F., and Wolff, M.W., Expert Rev. Vaccines, 2022, vol. 21, p. 1029. https://doi.org/10.1080/14760584.2022.2072302

    Article  CAS  PubMed  Google Scholar 

  9. Kravchenko, A., Kolobova, E., and Kartsova, L., Sep. Sci. Plus, 2020, vol. 3, p. 102. https://doi.org/10.1002/sscp.201900098

    Article  CAS  Google Scholar 

  10. Kravchenko, A.V., Kolobova, E.A., Kechin, A.A., and Kartsova, L.A., J. Sep. Sci., 2022, vol. 46, p. 2200601. https://doi.org/10.1002/jssc.202200601

    Article  CAS  Google Scholar 

  11. Makeeva, D., Polikarpova, D., Demyanova, E., Roshchina, E., Vakhitov, T., and Kartsova, L., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci.2020, vol. 1156, p. 122304. https://doi.org/10.1016/j.jpba.2022.114663

    Article  CAS  Google Scholar 

  12. Makeeva, D., Sall, T., Moskvichev, D., Kartsova, L., Sitkin, S., and Vakhitov, T., J. Pharm. Biomed. Anal., 2022, vol. 213, p. 114663. https://doi.org/10.1016/j.jpba.2022.114663

    Article  CAS  PubMed  Google Scholar 

  13. Ptolemy, A.S., Tran, L., and Britz-McKibbin, P., Anal. Biochem., 2006, vol. 354, p. 192. https://doi.org/10.1016/j.ab.2006.04.016

    Article  CAS  PubMed  Google Scholar 

  14. Kartsova, L.A. and Moskvichev, D.O., J. Anal. Chem., 2022, vol. 77, p. 618. https://doi.org/10.1134/S1061934822050057

    Article  Google Scholar 

  15. Oliveira, R., Simionato, V.A.C., and Cass, B., Molecules, 2021, vol. 26, p. 5231. https://doi.org/10.3390/molecules26175231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tanwar, S. and Bhushan, R., Chromatographia, 2015, vol. 78, p. 1113. https://doi.org/10.1007/s10337-015-2933-8

    Article  CAS  Google Scholar 

  17. Bernardo-Bermejo, S., Sanchez-Lopez, E., Castro-Puyana, M., and Marina, M.L., TrAC, Trends Anal. Chem., 2020, vol. 124, p. 115807. https://doi.org/10.1016/j.trac.2020.115807

    Article  CAS  Google Scholar 

  18. Fanali, S. and Chankvetadze, B., Electrophoresis, 2019, vol. 40, p. 2420. https://doi.org/10.1002/elps.201900144

    Article  CAS  PubMed  Google Scholar 

  19. Saz, J.M. and Marina, M.L., J. Chromatogr. A, 2016, vol. 1467, p. 79. https://doi.org/10.1016/j.chroma.2016.08.029

    Article  CAS  PubMed  Google Scholar 

  20. Rezanka, P., Navratilova, K., Rezanka, M., Kral, V., and Sykora, D., Electrophoresis, 2014, vol. 35, p. 2701. https://doi.org/10.1002/elps.201400145

    Article  CAS  PubMed  Google Scholar 

  21. Yu, R.B. and Quirino, J.P., J. Sep. Sci., 2022, vol. 45, p. 1195. https://doi.org/10.1002/jssc.202100835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peluso, P. and Chankvetadze, B., Electrophoresis, 2021, vol. 42, p. 1676. https://doi.org/10.1002/elps.202100053

    Article  CAS  PubMed  Google Scholar 

  23. De Boer, T., De Zeeuw, R.A., De Jong, G.J., and Ensing, K., Electrophoresis, 2000, vol. 21, p. 3220. https://doi.org/10.1002/1522-2683(20000901)21:15<3220::AID-ELPS3220>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  24. Dai, Y., Wang, S., Zhou, J., Liu, Y., Sun, D., Tang, J., and Tan, W., J. Chromatogr. A, 2012, vol. 1246, p. 98. https://doi.org/10.1016/j.chroma.2012.02.065

    Article  CAS  PubMed  Google Scholar 

  25. Li, A., Xue, S., Ren, S., Xu, Y., and Zhang, Q., Anal. Chim. Acta, 2022, vol. 121, p. 339936. https://doi.org/10.1016/j.aca.2022.339936

    Article  CAS  Google Scholar 

  26. Hu, W., Hong, T., Gao, X., and Ji, Y., TrAC, Trends Anal. Chem., 2014, vol. 61, p. 29. https://doi.org/10.1016/j.trac.2014.05.011

    Article  CAS  Google Scholar 

  27. Chen, J.L. and Hsieh, K.H., Electrophoresis, 2011, vol. 32, p. 398. https://doi.org/10.1002/elps.201000410

    Article  CAS  PubMed  Google Scholar 

  28. Wang, D., Song, X., Duan, Y., Xu, L., Zhou, J., and Duan, H., Preparation and characterization of a polystyrene/bovine serum albumin nanoparticle-coated capillary for chiral separation using open-tubular capillary electrochromatography, Electrophoresis, 2013, vol. 34, p. 1339. https://doi.org/10.1002/elps.201200672

    Article  CAS  PubMed  Google Scholar 

  29. Fanali, S., Rudaz, S., Veuthey, J.L., and Desiderio, C., J. Chromatogr. A, 2001, vol. 919, p. 195. https://doi.org/10.1002/1522-2683(200102)22:3<535::AID-ELPS535>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Q., TrAC, Trends Anal. Chem., 2018, vol. 100, p. 145. https://doi.org/10.1016/j.trac.2018.01.001

    Article  CAS  Google Scholar 

  31. Zhang, J., Du, Y., Zhang, Q., and Lei, Y., Talanta, 2014, vol. 119, p. 193. https://doi.org/10.1016/j.talanta.2013.10.042

    Article  CAS  PubMed  Google Scholar 

  32. Stavrou, I.J. and Kapnissi-Christodoulou, C.P., Electrophoresis, 2013, vol. 34, p. 524. https://doi.org/10.1002/elps.201200469

    Article  CAS  PubMed  Google Scholar 

  33. Franc, Y., Varenne, A., Juillerat, E., Villemin, D., Gareil, P., and François, Y., J. Chromatogr. A, 2007, vol. 1155, p. 134. https://doi.org/10.1016/j.chroma.2006.12.076

    Article  CAS  Google Scholar 

  34. Ali Rizvi, S.A. and Shahab, S.A., Anal. Chem., 2006, vol. 78, p. 7061. https://doi.org/10.1021/ac060878u

    Article  CAS  Google Scholar 

  35. Kolobova, E.A., Kartsova, L.A., Alopina, E.V., and Smirnova, N.A., Anal. Kontrol’, 2018, vol. 22, no. 1, p. 51. https://doi.org/10.15826/analitika.2018.22.1.004

    Article  Google Scholar 

  36. Constantinou, A.S., Nicolaou, I.N., and Kapnissi-Christodoulou, C.P., J. Chromatogr. Sci., 2012, vol. 50, p. 228. https://doi.org/10.1093/chromsci/bmr050

    Article  CAS  PubMed  Google Scholar 

  37. Fu, Q., Zhang, K., Gao, D., Wang, L., Yang, F., Liu, Y., and Xia, Z., Anal. Chim. Acta, 2017, vol. 969, p. 63. https://doi.org/10.1016/j.aca.2017.03.036

    Article  CAS  PubMed  Google Scholar 

  38. Li, L., Xia, Z., Yang, F., Chen, H., and Zhang, Y., J. Sep. Sci., 2012, vol. 35, p. 2101. https://doi.org/10.1002/jssc.201200315

    Article  CAS  PubMed  Google Scholar 

  39. Fung, F.M., Su, M., Feng, H.T., and Li, S.F.Y., Sci. Rep., 2017, vol. 7, p. 10774. https://doi.org/10.1038/s41598-017-11232-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Geurink, L., van Tricht, E., van der Burg, D., Scheppink, G., Pajic, B., Dudink, J., and Sanger-van de Griend, C., Electrophoresis, 2022, vol. 43, p. 9. https://doi.org/10.1002/elps.202100269

    Article  CAS  Google Scholar 

  41. Buszewski, B., Anal. Chem., 2009, vol. 81, p. 8. https://doi.org/10.1021/ac801369a

    Article  CAS  PubMed  Google Scholar 

  42. Soga, T., TrAC, Trends Anal. Chem., 2023, vol. 158, p. 116883. https://doi.org/10.1016/j.trac.2022.116883

    Article  CAS  Google Scholar 

  43. Nagy, C., Andrasi, M., Hamidli, N., Gyemant, G., and Gaspar, A., J. Chromatogr. Open, 2022, vol. 2, p. 100024. https://doi.org/10.1016/j.jcoa.2021.100024

    Article  Google Scholar 

  44. Herrero, M., Ibañez, E., and Cifuentes, A., Electrophoresis, 2008, vol. 29, p. 2148. https://doi.org/10.1002/elps.200700404

    Article  CAS  PubMed  Google Scholar 

  45. Mechref, Y. and Novotny, M.V., Mass Spectrom. Rev., 2009, vol. 28, p. 207. https://doi.org/10.1002/mas.20196

    Article  CAS  PubMed  Google Scholar 

  46. Font, G., Ruiz, M.J., Fernandez, M., and Pico, Y., Electrophoresis, 2008, vol. 29, p. 2059. https://doi.org/10.1002/elps.200700669

    Article  CAS  PubMed  Google Scholar 

  47. Robledo, V.R. and Smyth, W.F., Electrophoresis, 2009, vol. 30, p. 1647. https://doi.org/10.1002/elps.200800651

    Article  CAS  Google Scholar 

  48. Mischak, H., Coon, J.J., Novak, J., Weissinger, E.M., Schanstra, J.P., and Dominiczak, A.F., Mass Spectrom. Rev., 2009, vol. 28, p. 703. https://doi.org/10.1002/mas.20205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Servais, A.C., Crommen, J., and Fillet, M., Electrophoresis, 2006, vol. 27, p. 2616. https://doi.org/10.1002/elps.200500934

    Article  CAS  PubMed  Google Scholar 

  50. Jou, Y.-J., Lin, C.-D., Lai, C.-H., Chen, C.-H., Kao, J.-Y., Chen, S.-Y., Tsai, M.-H., Huang, S.-H., and Lin, C.-W., Anal. Chim. Acta, 2010, vol. 681, p. 41. https://doi.org/10.1016/j.aca.2010.09.030

    Article  CAS  PubMed  Google Scholar 

  51. Ashfaq, M.Y., Da’na, A.D., and Al-Ghouti, M.A., J. Environ. Manage., 2022, vol. 305, p. 114359. https://doi.org/10.1016/j.jenvman.2021.114359

    Article  CAS  PubMed  Google Scholar 

  52. Dingle, T.C. and Butler-Wu, S.M., Clin. Lab. Med., 2013, vol. 33, p. 589. https://doi.org/10.1016/j.cll.2013.03.001

    Article  PubMed  Google Scholar 

  53. Cloupeau, M. and Prunet-Foch, B., J. Aerosol Sci., 1994, vol. 25, p. 1021. https://doi.org/10.1016/0021-8502(94)90199-6

    Article  CAS  Google Scholar 

  54. Prudenta, M., Hubert, H., and Girault, H., Analyst, 2009, vol. 134, p. 2189. https://doi.org/10.1039/B910917J

    Article  Google Scholar 

  55. Reiter, S.M., Buchberger, W., and Klampf, C.W., Chromatographia, 2010, vol. 71, p. 715. https://doi.org/10.1365/s10337-010-1504-2

    Article  CAS  Google Scholar 

  56. Lee, E.D., Muck, W., Henion, J.D., and Covey, T.R., J. Chromatogr. A, 1988, vol. 458, p. 313. https://doi.org/10.1016/S0021-9673(00)90575-2

    Article  CAS  Google Scholar 

  57. Lee, E.D., Muck, W., Henion, J.D., and Covey, T.R., Biomed. Environ. Mass Spectrom., 1989, vol. 18, p. 844. https://doi.org/10.1002/bms.1200180932

    Article  CAS  Google Scholar 

  58. Pleasance, S., Thibault, P., and Kelly, J., J. Chromatogr. A, 1992, vol. 591, p. 325. https://doi.org/10.1016/0021-9673(92)80250-X

    Article  CAS  Google Scholar 

  59. Juraschek, R., Dulcks, T., and Karas, M., J. Am. Soc. Mass Spectrom., 1999, vol. 10, p. 300. https://doi.org/10.1016/S1044-0305(98)00157-3

    Article  CAS  PubMed  Google Scholar 

  60. Sah, S., Yun, S.R., Gaul, D.A., Botros, A., Park, E.Y., Kim, O., Kim, J., and Fernandez, F.M., Metabolites, 2022, vol. 12, p. 532. https://doi.org/10.3390/metabo12060532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stachowiak, J.C., Shugard, E.E., Mosier, B.P., Renzi, R.F., Caton, P.F., Ferko, S.M., Van De Vreugde, J.L., Yee, D.D., Haroldsen, B.L., and Vandernoot, V.A., Anal. Chem., 2007, vol. 79, p. 5763. https://doi.org/10.1021/ac070567z

    Article  CAS  PubMed  Google Scholar 

  62. McLaughlin, J., Nelson, M., McNevin, D., Roffey, P., and Gahan, M.E., Forensic Sci. Med. Pathol., 2014, vol. 10, p. 380. https://doi.org/10.1007/s12024-014-9578-z

    Article  CAS  PubMed  Google Scholar 

  63. Langmajerov, M.S., Pelcov, M., Vedrova, P., Cel, A., and Glatz, Z., Electrophoresis, 2022, vol. 43, p. 679. https://doi.org/10.1002/elps.202100328

    Article  CAS  Google Scholar 

  64. Soga, T., Igarashi, K., Ito, C., Mizobuchi, K., Zimmermann, H.P., and Tomita, M., Anal. Chem., 2009, vol. 81, p. 6165. https://doi.org/10.1021/ac900675k

    Article  CAS  PubMed  Google Scholar 

  65. Shanmuganathan, M., Kroezen, Z., Gill, B., Azab, S., de Souza, R.J., Teo, K.K., Atkinson, S., Subbarao, P., Desai, D., Anand, S.S., and Britz-McKibbin, P., Nat. Protoc., 2021, vol. 16, p. 4538. https://doi.org/10.1038/s41596-021-00569-3

    Article  CAS  PubMed  Google Scholar 

  66. Aturki, Z., Fanali, S., and Rocco, A., Electrophoresis, 2016, vol. 37, p. 2875. https://doi.org/10.1002/elps.201600312

    Article  CAS  PubMed  Google Scholar 

  67. Tejada-Casado, C., Moreno-Gonzalez, D., Del Olmo-Iruela, M., Garcia-Campana, A.M., and Lara, F.J., Talanta, 2017, vol. 175, p. 542. https://doi.org/10.1016/j.talanta.2017.07.080

    Article  CAS  PubMed  Google Scholar 

  68. Ou, X., Peng, C., Huang, X., Li, S., and Liu, B.-F., J. Sep. Sci., 2020, vol. 43, p. 258. https://doi.org/10.1002/jssc.201900758

    Article  CAS  PubMed  Google Scholar 

  69. Li, Z., Luo, F., Dai, G., Lu, Y., Ai, S., He, P., and Wang, Q., Microchem. J., 2019, vol. 150, p. 104178. https://doi.org/10.1016/j.microc.2019.104178

    Article  CAS  Google Scholar 

  70. Igarashi, K., Ota, S., Kaneko, M., Hirayama, A., Enomoto, M., Katumata, K., Sugimoto, M., and Soga, T., J. Chromatogr. A, 2021, vol. 1652, p. 462355. https://doi.org/10.1016/j.chroma.2021.462355

    Article  CAS  PubMed  Google Scholar 

  71. Ramautar, R., Shyti, R. Schoenmaker, B., de Groote, L., Derks, R.J.E., Ferrari, M.D., Van den Maagdenberg, A.M.J.M., Deelder, A.M., and Mayboroda, O.A., Anal. Bioanal. Chem., 2012, vol. 404, p. 2895. https://doi.org/10.1007/s00216-012-6431-7

    Article  CAS  PubMed  Google Scholar 

  72. Zamdborg, L., LeDuc, R.D., Glowacz, K.J., Kim, Y.B., Viswanathan, V., Spaulding, I.T., Early, B.P., Bluhm, E.J., Babai, S., and Kelleher, N.L., Nucleic Acid Res., 2007, vol. 35, p. 701. https://doi.org/10.1093/nar/gkm371

    Article  Google Scholar 

  73. Kou, Q., Xun, L., and Liu, X., Bioinformatics, 2016, vol. 32, p. 3495. https://doi.org/10.1093/bioinformatics/btw398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cesnik, A.J., Shortreed, M.R., Schaffer, L.V., Knoener, R.A., Frey, B.L., Scalf, M., Solntsev, S.K., Dai, Y., Gasch, A.P., and Smith, L.M., J. Proteome Res., 2018, vol. 17, p. 568. https://doi.org/10.1021/acs.jproteome.7b00685

    Article  CAS  PubMed  Google Scholar 

  75. Cai, W., Guner, H., Gregorich, Z.R., Chen, A.J., Ayaz-Guner, S., Peng, Y., Valeja, S.G., Liu, X., and Ge, Y., Mol. Cell. Proteomics, 2016, vol. 15, p. 703. https://doi.org/10.1074/mcp.O115.054387

    Article  CAS  PubMed  Google Scholar 

  76. Yuan, H., Jiang, B., Zhao, B., Zhang, L., and Zhang, Y., Anal. Chem., 2019, vol. 91, p. 264. https://doi.org/10.1021/acs.analchem.8b04894

    Article  CAS  PubMed  Google Scholar 

  77. Magdeldin, S., Moresco, J.J., Yamamoto, T., and Yates, J.R., 3rd, J. Proteome Res., 2014, vol. 13, p. 3826. https://doi.org/10.1021/pr500530e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lewis, K.C., Opiteck, G.J., Jorgenson, J.W., and Sheeley, D.M., J. Am. Soc. Mass Spectrom., 1997, vol. 8, p. 495. https://doi.org/10.1016/S1044-0305(97)00009-3

    Article  CAS  Google Scholar 

  79. Zhang, J., Hu, H., Gao, M., Yang, P., and Zhang, X., Electrophoresis, 2004, vol. 25, p. 2374. https://doi.org/10.1002/elps.200405956

    Article  CAS  PubMed  Google Scholar 

  80. Michels, D.A., Hu, S., Schoenherr, R.M., Eggertson, M.J., and Dovichi, N.J., Mol. Cell. Proteomics, 2002, vol. 1, p. 69. https://doi.org/10.1074/mcp.t100009-mcp200

  81. Horka, M., Karasek, P., Salplachta, J., Ruzicka, F., Vykydalova, M., Kubesova, A., Drab, V., Roth, M., and Slais, K., Anal. Chim. Acta, 2013, vol. 788, p. 193. https://doi.org/10.1016/j.aca.2013.05.059

    Article  CAS  PubMed  Google Scholar 

  82. Horka, M., Karasek, P., Salplachta, J., Ruzicka, F., Stverakova, D., Pantucek, R., and Roth, M., Microchim. Acta, 2020, vol. 187, p. 4154. https://doi.org/10.1007/s00604-020-4154-6

    Article  CAS  Google Scholar 

  83. Horka, M., Salplachta, J., Karasek, P., Kubesova, A., Horky, J., Matouskova, H., Slais, K., and Roth, M., Anal. Chem., 2013, vol. 85, p. 6806. https://doi.org/10.1021/ac4009176

    Article  CAS  PubMed  Google Scholar 

  84. Horka, M., Karasek, P., Salplachta, J., Ruzicka, F., and Vykydalova, M., Anal. Chim. Acta, 2013, vol. 788, p. 193. https://doi.org/10.1016/j.aca.2013.05.059

    Article  CAS  PubMed  Google Scholar 

  85. Musyimi, H.K., Narcisse, D.A., Zhang, X., Stryjewski, W., Soper, S.A., and Murray, K.K., Neuropeptidome Anal. Chem., 2004, vol. 76, p. 5968– 5973. https://doi.org/10.1039/C9AN01883B

    Article  CAS  PubMed  Google Scholar 

  86. Preisler, J., Hu, P., Rejtar, T., and Karger, B.L., Anal. Chem., 2000, vol. 72, p. 4785. https://doi.org/10.1021/ac0005870

    Article  CAS  PubMed  Google Scholar 

  87. Rejtar, T., Hu, P., Juhasz, P., Campbell, J.M., Vestal, M.L., Preisler, J., and Karger, B.L., J. Proteome Res., 2002, vol. 1, p. 171. https://doi.org/10.1021/pr015519o

    Article  CAS  PubMed  Google Scholar 

  88. DeLaney, K. and Li, L., Neuropeptidome Analyst, 2019, vol. 16, p. 61. https://doi.org/10.1039/c9an01883b

    Article  CAS  Google Scholar 

  89. Duncan, K.D. and Lanekoff, I., Anal. Chem., 2019, vol. 91, p. 7819. https://doi.org/10.1021/acs.analchem.9b01516

    Article  CAS  PubMed  Google Scholar 

  90. Golubova, A. and Lanekoff, I., Electrophoresis, 2023, vol. 44, p. 387. https://doi.org/10.1002/elps.202200183

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-13-00370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Kartsova.

Additional information

Translated by E. Rykova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartsova, L.A., Makeeva, D.V. Biomedical Applications of Capillary Electrophoresis. J Anal Chem 78, 1362–1377 (2023). https://doi.org/10.1134/S1061934823100118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823100118

Keywords:

Navigation