Skip to main content
Log in

Multilayer Coatings Based On Citrate-Stabilized Gold Nanoparticles and Polydiallyldimethylammonium Chloride for the Electrophoretic Separation of Carboxylic Acids

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The conditions for the formation of physically adsorbed three-layer coatings of quartz capillary walls in capillary electrophoresis (CE) with successively deposited oppositely charged layers of polydiallyldimethylammonium chloride (PDADMAC) modifiers and citrate-stabilized gold nanoparticles (GNPs) are proposed. It was shown that three-layer PDADMAC–GNP–PDADMAC coatings favorably differ from monolayer coatings with PDADMAC by greater stability in a wide range of pH (2–10). The formed coatings were characterized by scanning electron microscopy, and the presence of a uniform dense layer of nanoparticles on the capillary surface was confirmed. The applicability of the modified capillaries under CE conditions was demonstrated by the separation of a mixture of 16 carboxylic acids. An increase in the separation selectivity achieved with the use of three-layer coatings based on GNPs was explained by the reversible exchange of citrate anions on the GNP surface with negatively charged analytes in the course of electrophoretic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Kartsova, L.A., Makeeva, D.V., and Bessonova, E.A., J. Anal. Chem., 2020, vol. 12, no. 75, p. 1497.

    Article  Google Scholar 

  2. Kartsova, L.A., Makeeva, D.V., and Davankov, V.A., TrAC, Trends Anal. Chem., 2019, vol. 120. https://doi.org/10.1016/j.trac.2019.115656

  3. Ban, E., Yoo, Y.S., and Song, E.J., Talanta, 2015, vol. 141, p. 15. https://doi.org/10.1016/j.talanta.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Z., Yan, B., Liu, K., Liao, Y., and Liu, H., Electrophoresis, 2009, vol. 30, p. 379. https://doi.org/10.1002/elps.200800069

    Article  CAS  PubMed  Google Scholar 

  5. Hamer, M., Yone, A., and Rezzano, I., Electrophoresis, 2021, vol. 33, p. 334. https://doi.org/10.1002/elps.201100297

    Article  CAS  Google Scholar 

  6. Kang, H., Buchman, J.T., Rodriguez, R.S., Ring, H.L., He, J., Bantz, K.C., and Haynes, C.L., Chem. Rev., 2019, vol. 119, no. 1, p. 664. https://doi.org/10.1021/acs.chemrev.8b00341

    Article  CAS  PubMed  Google Scholar 

  7. Neiman, B., Grushka, E., and Lev, O., Anal. Chem., 2001, vol. 73, p. 5220. https://doi.org/10.1021/ac0104375

    Article  CAS  PubMed  Google Scholar 

  8. Yu, C.J., Su, C.L., and Tseng, W.L., Anal. Chem., 2006, vol. 78, p. 8004. https://doi.org/10.1021/ac061059c

    Article  CAS  PubMed  Google Scholar 

  9. Subramaniam, V., Griffith, L., and Haes, A.J., Analyst, 2011, vol. 136, p. 3469. https://doi.org/10.1039/C1AN15185A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qu, Q., Liu, D., Mangelings, D., Yang, C., and Hu, X., J. Chromatogr. A, 2010, vol. 1217, p. 6588. https://doi.org/10.1016/j.chroma.2010.08.057

    Article  CAS  PubMed  Google Scholar 

  11. Robb, C.S., J. Liq. Chromatogr. Relat. Technol., 2007, vol. 30, no. 5, p. 729. https://doi.org/10.1080/10826070701191029

    Article  CAS  Google Scholar 

  12. Morrison, D.J. and Preston, T., Gut Microbes, 2016, vol. 7, p. 189. https://doi.org/10.1080/19490976.2015.1134082

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang, Q., Niu, Y., Lyu, W., and Yu, M., Chem. Biol. Interact., 2019, vol. 309. https://doi.org/10.1016/j.cbi.2019.06.023

  14. Galland, L., J. Med. Food, 2014, vol. 17, p. 1261. https://doi.org/10.1089/jmf.2014.7000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frens, G., Nat. Phys. Sci., 1973, vol. 241, p. 20.

    Article  CAS  Google Scholar 

  16. Polikarpova, D., Makeeva, D., Kartsova, L., Dolgonosov, A., and Kolotilina, N., Talanta, 2018, vol. 188, p. 744. https://doi.org/10.1016/j.talanta.2018.05.094

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Resource Center “Methods for Analyzing the Composition of Substances” for the opportunity to perform capillary electrophoresis studies and to the Interdisciplinary Resource Center “Nanotechnology” (Science Park at St. Petersburg State University) for performing scanning and transmission electron microscopy analysis.

Funding

This study was supported by the Russian Science Foundation (grant no. 21-73-00211, https://rscf.ru/project/21-73-00211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Makeeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makeeva, D.V., Antipova, K.S., Solovyeva, E.V. et al. Multilayer Coatings Based On Citrate-Stabilized Gold Nanoparticles and Polydiallyldimethylammonium Chloride for the Electrophoretic Separation of Carboxylic Acids. J Anal Chem 78, 361–371 (2023). https://doi.org/10.1134/S1061934823030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823030085

Keywords:

Navigation