Skip to main content
Log in

Etoposide-Loaded Colloidal Delivery Systems Based on Biodegradable Polymeric Carriers

  • Published:
Colloid Journal Aims and scope Submit manuscript

The review is focused on the etoposide delivery systems based on colloidal carriers, i.e., nanoparticles and micelles made of synthetic and natural polymers. Etoposide, a topoisomerase II inhibitor, occupies an important place in the chemotherapy of a number of tumors; however, its use is often limited due to severe side effects. The application of colloidal delivery systems makes it possible to change the pharmacokinetic parameters of etoposide and increase its accumulation in tumors leading to an increase in the antitumor effect. Of particular interest are stimuli-sensitive systems that respond to specific conditions in the tumor microenvironment, which can significantly increase the selectivity of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Hande, K.R., Etoposide: Four decades of development of a topoisomerase II inhibitor, Eur. J. Cancer, 1998, vol. 34, no. 10, pp. 1514–1521. https://doi.org/10.1016/S0959-8049(98)00228-7

    Article  CAS  PubMed  Google Scholar 

  2. Model List of Essential Medicines, list 21, 2019, Copenhagen: WHO Regional Office for Europe, 2020, License: CC BY-NC-SA 3.0 IGO. https://apps.who. int/ iris/bitstream/handle/10665/331990/WHO-EURO-2020-476-40211-53802-rus.pdf?sequence=1&isAllowed=y

  3. Agrawal, K., Etoposide, xPharm: The Comprehensive Pharmacology Reference, 2007, pp. 1–5. https://doi.org/10.1016/B978-008055232-3.61729-5

  4. Slevin, M.L., The clinical pharmacology of etoposide, Cancer, 1991, vol. 67, no. S1, pp. 319–329. https://doi.org/10.1002/1097-0142(19910101)67:1+<319::AID-CNCR2820671319>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  5. Montecucco, A., Zanetta, F., and Biamonti, G., Molecular mechanisms of etoposide, EXCLI Journal Leibniz Research Centre for Working Environment and Human Factors, 2015, vol. 14, pp. 95–108. https://doi.org/10.17179/excli2014-561

    Article  Google Scholar 

  6. Baldwin, E.L. and Osheroff, N., Etoposide, topoisomerase II and cancer, Curr. Med. Chem.: Anti-Cancer Agents, 2005, vol. 5, no. 4, pp. 363–372. https://doi.org/10.2174/1568011054222364

    Article  CAS  PubMed  Google Scholar 

  7. Kroschinsky, F.P., Friedrichsen, K., Mueller, J., et al., Pharmacokinetic comparison of oral and intravenous etoposide in patients treated with the CHOEP-regimen for malignant lymphomas, Cancer Chemother. Pharmacol., 2008, vol. 61, pp. 785–790. https://doi.org/10.1007/s00280-007-0535-3

    Article  CAS  PubMed  Google Scholar 

  8. Shah, J.C., Chen, J.R., and Chow, D., Preformulation study of etoposide: Identification of physicochemical characteristics responsible for the low and erratic oral bioavailability of etoposide, Pharm. Res., 1989, vol. 6, pp. 408–412. https://doi.org/10.1023/A:1015935532725

    Article  CAS  PubMed  Google Scholar 

  9. Siderov, J., Prasad, P., De Boer, R., and Desai, J., Safe administration of etoposide phosphate after hypersensitivity reaction to intravenous etoposide, Br. J. Cancer, 2002, vol. 86, no. 1, pp. 12–13. https://doi.org/10.1038/sj.bjc.6600003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoetelmans, R.M.W., Schornagel, J.H., Bokkel, Huinink, W.W., and Beijnen, J.H., Hypersensitvity reactions to etoposide, Ann. Pharmacother., 1996, vol. 30, no. 4, pp. 367–371. https://doi.org/10.1177/106002809603000409

    Article  CAS  PubMed  Google Scholar 

  11. Bernstein, B.J. and Troner, M.B., Successful rechallenge with etoposide phosphate after an acute hypersensitivity reaction to etoposide, Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 1999, vol. 19, no. 8, pp. 989–991. https://doi.org/10.1592/phco.19.11.989.31566

    Article  CAS  Google Scholar 

  12. Zhao, W., Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy, Nat. Prod. Rep., 2021, vol. 38, no. 3, pp. 470–488. https://doi.org/10.1039/d0np00041h

    Article  CAS  PubMed  Google Scholar 

  13. Makhacheva, F.A. and Valiev, T.T., Clinical features of secondary acute myeloid leukemia in children, Oncohematology, 2020, vol. 15, no. 4, pp. 12–17. https://doi.org/10.17650/1818-8346-2020-15-4-12-17

    Article  Google Scholar 

  14. Zhang, M., Hagan, C.T., Foley, H., et al., Co-delivery of etoposide and cisplatin in dual-drug loaded nanoparticles synergistically improves chemoradiotherapy in non-small cell lung cancer models, Acta Biomater., 2021, vol. 124, pp. 327–335. https://doi.org/10.1016/j.actbio.2021.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rafiyath, S.M., Rasul, M., Lee, B., Wei, G., Lamba, G., and Liu, D., Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: A meta-analysis, Exp. Hematol. Oncol., 2012, vol. 1, pp. 1–10. https://doi.org/10.1186/2162-3619-1-10

  16. Pharmacopoeia of the Russian Federation, Requirements for quality indicators and research of drugs based on liposomes, micelles and drugs containing nanoparticle coatings. https://pharmacopoeia.ru/trebovaniya-k-pokazatelyam-kachestva-i-issledovaniyu-lekarstvennyh-sredstv-na-osnove-liposom-mitsell-ilekarsvtennyh-sredstv-soderzhashhih-pokrytiya-iz-nanochastits/#%D0%A0%D0%90%D0%97%D0%94%D0%95%D0%9B_2_%D0%A0%D0%B0%D0%B7%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D0%BB%D0%B5%D0%BA%D0%B0%D1%80%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D0%BF%D1%80%D0%B5%D0%BF%D0%B0%D1%80%D0%B0%D1%82%D0%BE%D0%B2_%D0%BD%D0%B0_%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D0%B5_%D0%BC%D0%B8%D1%86%D0%B5%D0%BB%D0%BB_%D0%B1%D0%BB%D0%BE%D0%BA-%D1%81%D0%BE%D0%BF%D0%BE%D0%BB%D0%B8%D0%BC%D0%B5%D1%80%D0%BE%D0%B2. Cited July 20, 2022.

  17. US FDA, Drug Products, Including Biological Products, that Contain Nanomaterials, Guidance for Industry, April 2022. www.fda.gov/media/157812.

  18. Sindhwani, S., Syed, A.M., Ngai, J., et al., The entry of nanoparticles into solid tumours, Nat. Mater., 2020, vol. 19, no. 5, pp. 566–575. https://doi.org/10.1038/s41563-019-0566-2

    Article  CAS  PubMed  Google Scholar 

  19. Malinovskaya, J., Salami, R., Valikhov, M., et al., Supermagnetic human serum albumin (HSA) nanoparticles and PLGA-based doxorubicin nanoformulation: A duet for selective nanotherapy, Int. J. Mol. Sci., 2023, vol. 24, p. 627. https://doi.org/10.3390/ijms24010627

    Article  CAS  Google Scholar 

  20. Yuan, Z.Q., Chen, W.L., You, B.G., et al., Multifunctional nanoparticles co-delivering EZH2 siRNA and etoposide for synergistic therapy of orthotopic non-small-cell lung tumor, JCR, 2017, vol. 268, pp. 198–211. https://doi.org/10.1016/j.jconrel.2017.10.025

    Article  CAS  Google Scholar 

  21. Huang, H.L. and Lin, W.J., Dual peptide-modified nanoparticles improve combination chemotherapy of etoposide and siPIK3CA against drug-resistant small cell lung carcinoma, Pharmaceutics, 2020, vol. 12, no. 3, p. 254. https://doi.org/10.3390/pharmaceutics12030254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bai, J., Tian, Y., Liu, F., et al., Octreotide-conjugated core-cross-linked micelles with pH/redox responsivity loaded with etoposide for neuroendocrine neoplasms therapy and bioimaging with photoquenching resistance, ACS Appl. Mater. Interface, 2019, vol. 11, no. 20, pp. 18111–18122. https://doi.org/10.1021/acsami.9b01827

    Article  CAS  Google Scholar 

  23. Kuo, Y.C., Chang, Y.H., and Rajesh, R., Targeted delivery of etoposide, carmustine and doxorubicin to human glioblastoma cells using methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles conjugated with wheat germ agglutinin and folic acid, Mater. Sci. Eng., C, 2019, vol. 96, pp. 114–128. https://doi.org/10.1016/j.msec.2018.10.094

    Article  CAS  Google Scholar 

  24. Cohen, Y., Levi, M., Lesmes, U., Margier, M., Reboul, E., and Livney, Y.D., Re-assembled casein micelles improve in vitro bioavailability of vitamin D in a Caco-2 cell model, Food & Function, 2017, vol. 8, no. 6, pp. 2133–2141. https://doi.org/10.1039/c7fo00323d

    Article  CAS  Google Scholar 

  25. Naumenko, V.A., Vlasova, K.Y., Garanina, A.S., et al., Extravasating neutrophils open vascular barrier and improve liposomes delivery to tumors, ACS Nano, 2019, vol. 13, no. 11, pp. 12599–12612. https://doi.org/10.1021/acsnano.9b03848

    Article  CAS  PubMed  Google Scholar 

  26. Lin, Q., Fathi, P., and Chen, X., Nanoparticle delivery in vivo: A fresh look from intravital imaging, EBioMedicine, 2020, vol. 59, p. 102958. https://doi.org/10.1016/j.ebiom.2020.102958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Golombek, S.K., et al., Tumor targeting via EPR: Strategies to enhance patient responses, Adv. Drug Delivery Rev., 2018, vol. 130, pp. 17–38. https://doi.org/10.1016/j.addr.2018.07.007

    Article  CAS  Google Scholar 

  28. Kakkar, A., Traverso, G., Farokhzad, O.C., Weissleder, R., and Langer, R., Evolution of macromolecular complexity in drug delivery systems, Nat. Rev. Chem., 2017, vol. 1, no. 8, p. 0063. https://doi.org/10.1038/s41570-017-0063

  29. Mitchell, M.J., Billingsley, M.M., Haley, R.M., et al., Engineering precision nanoparticles for drug delivery, Nat. Rev. Drug Discovery, 2021, vol. 20, no. 2, pp. 101–124. https://doi.org/10.1038/s41573-020-0090-8

    Article  CAS  PubMed  Google Scholar 

  30. Takechi-Haraya, Y., Ohgita, T., Demizu, Y., Saito, H., Izutsu, K.I., and Sakai-Kato, K., Current status and challenges of analytical methods for evaluation of size and surface modification of nanoparticle-based drug formulations, AAPS PharmSciTech, 2022, vol. 23, no. 5, p. 150. https://doi.org/10.1208/s12249-022-02303-y

    Article  CAS  PubMed  Google Scholar 

  31. Nel, A.E., Mädler, L., Velegol, D., et al., Understanding biophysicochemical interactions at the nano-bio interface, Nat. Mater., 2009, vol. 8, no. 7, pp. 543–557. https://doi.org/10.1038/nmat2442

    Article  CAS  PubMed  Google Scholar 

  32. Skalickova, S., Nejdl, L., Kudr, J., et al., Fluorescence characterization of gold modified liposomes with antisense N-myc DNA bound to the magnetisable particles with encapsulated anticancer drugs (doxorubicin, ellipticine and etoposide), Sensors, 2016, vol. 16, no. 3, p. 290. https://doi.org/10.3390/s16030290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mehrabi, M., Esmaeilpour, P., Akbarzadeh, A., et al., Efficacy of pegylated liposomal etoposide nanoparticles on breast cancer cell lines, Turk. J. Med. Sci., 2016, vol. 46, no. 2, pp. 567–571. https://doi.org/10.3906/sag-1412-67

    Article  CAS  PubMed  Google Scholar 

  34. Deng, W., Chen, W., Clement, S., et al., Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation, Nat. Commun., 2018, vol. 9, no. 1, p. 2713. https://doi.org/10.1038/s41467-018-05118-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Varshosaz, J., Hassanzadeh, F., Sadeghi-Aliabadi, H., and Firozian, F., Uptake of etoposide in CT-26 cells of colorectal cancer using folate targeted dextran stearate polymeric micelles, BioMed Res. Int., 2014, vol. 2014. https://doi.org/10.1155/2014/708593

  36. Qian, W.Y., Sun, D.M., Zhu, R.R., et al., pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release, Int. J. Nanomed., 2012, pp. 5781–5792. https://doi.org/10.2147/IJN.S34773

  37. Zhu, R., Wang, Q., Zhu, Y., et al., pH sensitive nano layered double hydroxides reduce the hematotoxicity and enhance the anticancer efficacy of etoposide on non-small cell lung cancer, Acta Biomater., 2016, vol. 29, pp. 320–332. https://doi.org/10.1016/j.actbio.2015.10.029

    Article  CAS  PubMed  Google Scholar 

  38. Snehalatha, M., Venugopal, K., and Saha, R.N., Etoposide-loaded PLGA and PCL nanoparticles I: Preparation and effect of formulation variables, Drug Delivery, 2008, vol. 15, no. 5, pp. 267–275. https://doi.org/10.1080/10717540802174662

    Article  CAS  Google Scholar 

  39. Yadav, K.S., Chuttani, K., Mishra, A.K., et al., Long circulating nanoparticles of etoposide using PLGA-MPEG and PLGA-pluronic block copolymers: Characterization, drug-release, blood-clearance, and biodistribution studies, Drug Dev. Res., 2010, vol. 71, no. 4, pp. 228–239. https://doi.org/10.1002/ddr.20365

    Article  CAS  Google Scholar 

  40. Yadav, K.S. and Sawant, K.K., Formulation optimization of etoposide loaded PLGA nanoparticles by double factorial design and their evaluation, Curr. Drug Delivery, 2010, vol. 7, no. 1, pp. 51–64. https://doi.org/10.2174/156720110790396517

    Article  CAS  Google Scholar 

  41. Wang, Z., Li, Z., Zhang, D., et al., Development of etoposide-loaded bovine serum albumin nanosuspensions for parenteral delivery, Drug Delivery, 2015, vol. 22, no. 1, pp. 79–85. https://doi.org/10.3109/10717544.2013.871600

    Article  CAS  PubMed  Google Scholar 

  42. Kuo, Y.C. and Lee, C.H., Inhibition against growth of glioblastoma multiforme in vitro using etoposide-loaded solid lipid nanoparticles with ρ-aminophenyl-α-D-manno-pyranoside and folic acid, J. Pharm. Sci., 2015, vol. 104, no. 5, pp. 1804–1814. https://doi.org/10.1002/jps.24388

    Article  CAS  PubMed  Google Scholar 

  43. Kuo, Y.C. and Wang, I.H., Enhanced delivery of etoposide across the blood-brain barrier to restrain brain tumor growth using melanotransferrin antibody-and tamoxifen-conjugated solid lipid nanoparticles, J. Drug Targeting, 2016, vol. 24, no. 7, pp. 645–654. https://doi.org/10.3109/1061186X.2015.1132223

    Article  CAS  Google Scholar 

  44. Jin, G.W., Rejinold, N.S., and Choy, J.H., Multifunctional polymeric micelles for cancer therapy, Polymers, 2022, vol. 14, no. 22, p. 4839. https://doi.org/10.3390/polym14224839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ahmad, I., Pandit, J., Sultana, Y., et al., Optimization by design of etoposide loaded solid lipid nanoparticles for ocular delivery: Characterization, pharmacokinetic and deposition study, Mater. Sci. Eng., C, 2019, vol. 100, pp. 959–970. https://doi.org/10.1016/j.msec.2019.03.060

    Article  CAS  Google Scholar 

  46. Zhu, Y., Zhu, R., Wang, M., et al., Anti-metastatic and anti-angiogenic activities of core-shell SiO2@LDH loaded with etoposide in non-small cell lung cancer, Adv. Sci., 2016, vol. 3, no. 11, p. 1600229. https://doi.org/10.1002/advs.201600229

    Article  CAS  Google Scholar 

  47. Jo, M.J., Shin, H.J., Yoon, M.S., et al., Evaluation of pH-sensitive polymeric micelles using citraconic amide bonds for the co-delivery of paclitaxel, etoposide, and rapamycin, Pharmaceutics, 2023, vol. 15, no. 1, 154. https://doi.org/10.3390/pharmaceutics15010154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abdel-Bar, H.M., Walters, A.A., Wang, J.T.W., and Al-Jamal, K.T., Combinatory delivery of etoposide and siCD47 in a lipid polymer hybrid delays lung tumor growth in an experimental melanoma lung metastatic model, Adv. Healthcare Mater., 2021, vol. 10, no. 7, p. 2001853. https://doi.org/10.1002/adhm.202001853

    Article  CAS  Google Scholar 

  49. Maleki, H., Naghibzadeh, M., Amani, A., et al., Preparation of paclitaxel and etoposide co-loaded MPEG-PLGA nanoparticles: An investigation with artificial neural network, J. Pharm. Innov., 2021, vol. 16, pp. 11–25. https://doi.org/10.1007/s12247-019-09419-y

    Article  Google Scholar 

  50. Maleki, H., Najafabadi, M.R.H., Webster, T.J., et al., Effect of Paclitaxel/etoposide co-loaded polymeric nanoparticles on tumor size and survival rate in a rat model of glioblastoma, Int. J. Pharm., 2021, vol. 604, p. 120722. https://doi.org/10.1016/j.ijpharm.2021.120722

    Article  CAS  PubMed  Google Scholar 

  51. Kovshova, T., Mantrov, S., Boiko, S., et al., Co-delivery of paclitaxel and etoposide prodrug by human serum albumin and PLGA nanoparticles: Synergistic cytotoxicity in brain tumour cells, J. Microencapsulation, 2023, vol. 40, no. 4, pp. 246–262. https://doi.org/10.1080/02652048.2023.2188943

    Article  CAS  PubMed  Google Scholar 

  52. Lim, C., Ramsey, J.D., Hwang, D., et al., Drug-dependent morphological transitions in spherical and worm-like polymeric micelles define stability and pharmacological performance of micellar drugs, Small, 2022, vol. 18, no. 4, p. 2103552. https://doi.org/10.1002/smll.202103552

    Article  CAS  Google Scholar 

  53. Rezvantalab, S., Drude, N.I., Moraveji, M.K., et al., PLGA-based nanoparticles in cancer treatment, Front. Pharmacol., 2018, vol. 9, p. 1260. https://doi.org/10.3389/fphar.2018.01260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Casalini, T., Rossi, F., Castrovinci, A., and Perale, G., A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications, Frontiers in Bioengineering and Biotechnology, 2019, vol. 7, p. 259. https://doi.org/10.3389/fbioe.2019.00259

    Article  PubMed  PubMed Central  Google Scholar 

  55. Operti, M.C., Bernhardt, A., Grimm, S., et al., PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up, Int. J. Pharm., 2021, vol. 605, p. 120807. https://doi.org/10.1016/j.ijpharm.2021.120807

    Article  CAS  PubMed  Google Scholar 

  56. Park, K., Otte, A., Sharifi, F., et al., Formulation composition, manufacturing process, and characterization of poly(lactide-co-glycolide) microparticles, J. Controlled Release, 2021, vol. 329, pp. 1150–1161. https://doi.org/10.1016/j.jconrel.2020.10.044

    Article  CAS  Google Scholar 

  57. Callewaert, M., Dukic, S., Van Gulick, L., et al., Etoposide encapsulation in surface-modified poly(lactide-co-glycolide) nanoparticles strongly enhances glioma antitumor efficiency, J. Biomed. Mater. Res., Part A, 2013, vol. 101 A, no. 5, pp. 1319–1327. https://doi.org/10.1002/jbm.a.34442

  58. Saadati, R. and Dadashzadeh, S., Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles: In vitro and in vivo evaluation, Int. J. Pharm., 2014, vol. 464, nos. 1–2, pp. 135–144. https://doi.org/10.1016/j.ijpharm.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  59. Yadav, K.S., Jacob, S., Sachdeva, G., and Sawant, K.K., Intracellular delivery of etoposide loaded biodegradable nanoparticles: Cytotoxicity and cellular uptake studies, J. Nanosci. Nanotechnol., 2011, vol. 11, no. 8, pp. 6657–6667. https://doi.org/10.1166/jnn.2011.4225

    Article  CAS  PubMed  Google Scholar 

  60. Rivas, C.J.M., Tarhini, M., Badri, W., et al., Nanoprecipitation process: From encapsulation to drug delivery, Int. J. Pharm., 2017, vol. 532, no. 1, pp. 66–81. https://doi.org/10.1016/j.ijpharm.2017.08.064

    Article  CAS  Google Scholar 

  61. Callewaert, M., Dukic, S., Van Gulick, L., et al., Etoposide encapsulation in surface-modified poly (lactide-co-glycolide) nanoparticles strongly enhances glioma antitumor efficiency, J. Biomed. Mater. Res., Part A, 2013, vol. 101, no. 5, pp. 1319–1327. https://doi.org/10.1002/jbm.a.34442

    Article  CAS  Google Scholar 

  62. Kovshova, T., Osipova, N., Alekseeva, A., et al., Exploring the interplay between drug release and targeting of lipid-like polymer nanoparticles loaded with doxorubicin, Molecules, 2021, vol. 26, no. 4, p. 831. https://doi.org/10.3390/molecules26040831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stipa, P., Marano, S., Galeazzi, R., et al., Prediction of drug-carrier interactions of PLA and PLGA drug-loaded nanoparticles by molecular dynamics simulations, Eur. Polym. J., 2021, vol. 147, p. 110292. https://doi.org/10.1016/j.eurpolymj.2021.110292

    Article  CAS  Google Scholar 

  64. Ermolenko, Y.V., Semyonkin, A.S., Ulianova, Y.V., et al., Role of hydrolytic degradation of polylactide drug carriers in developing micro- and nanoscale polylactide-based drug dosage forms, Russ. Chem. Bull., 2020, vol. 8, pp. 1416–1427. https://doi.org/10.1007/s11172-020-2918-0

    Article  CAS  Google Scholar 

  65. D’Souza, S.A., Review of in vitro drug release test methods for nano-sized dosage forms, Adv. Pharm., 2014, vol. 2014, pp. 1–12. https://doi.org/10.1155/2014/304757

    Article  Google Scholar 

  66. Pimple, S., Manjappa, A.S., Ukawala, M., and Murthy, R.S.R., PLGA nanoparticles loaded with etoposide and quercetin dihydrate individually: In vitro cell line study to ensure advantage of combination therapy, Cancer Nanotechnol., 2012, vol. 3, pp. 25–36. https://doi.org/10.1007/s12645-012-0027-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yadav, R., Kumar, D., Kumari, A., et al., Encapsulation of podophyllotoxin and etoposide in biodegradable poly-D,L-lactide nanoparticles improved their anticancer activity, J. Microencapsul., 2014, vol. 31, no. 3, pp. 211–219. https://doi.org/10.3109/02652048.2013.834988

    Article  CAS  PubMed  Google Scholar 

  68. Singh, V., Sahebkar, A., and Kesharwani, P., Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery, Eur. Polym. J., 2021, vol. 158, p. 110683. https://doi.org/10.1016/j.eurpolymj.2021.110683

    Article  CAS  Google Scholar 

  69. Posypanova, L.B., Gorshkova, A.V., Rodina, Y., et al., Characterization of the antitumor activity of a polymeric composition of etoposide and biodegradable copolymer of lactic and glycolic acids, Pharm. Chem. J., 2016, vol. 50, pp. 545–546.

    Article  Google Scholar 

  70. Mitra, M., Dilnawaz, F., Misra, R., et al., Toxicogenomics of nanoparticulate delivery of etoposide: Potential impact on nanotechnology in retinoblastoma therapy, Cancer Nanotechnol., 2011, vol. 2, nos. 1–6, pp. 21–36. https://doi.org/10.1007/s12645-010-0010-4

    Article  CAS  PubMed  Google Scholar 

  71. Schaefer, M.J. and Singh, J., Effect of tricaprin on the physical characteristics and in vitro release of etoposide from PLGA microspheres, Biomaterials, 2002, vol. 23, no. 16, pp. 3465–3471. https://doi.org/10.1016/S0142-9612(02)00053-4

    Article  CAS  PubMed  Google Scholar 

  72. Moghimi, S.M., Hunter, A.C., and Andresen, T.L., Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective, Annu. Rev. Pharmacol., 2012, vol. 52, pp. 481–503. https://doi.org/10.1146/annurev-pharmtox-010611-134623

    Article  CAS  Google Scholar 

  73. Yadav, K.S., Chuttani, K., Mishra, A.K., and Sawant, K.K., Effect of size on the biodistribution and blood clearance of etoposide-loaded PLGA nanoparticles, PDA J. Pharm. Sci. Technol., 2011, vol. 65, no. 2, pp. 131–139.

    CAS  PubMed  Google Scholar 

  74. Snehalatha, M., Kolachina, V., Saha, R.N., et al., Enhanced tumor uptake, biodistribution and pharmacokinetics of etoposide loaded nanoparticles in Dalton’s lymphoma tumor bearing mice, J. Pharm. BioAllied Sci., 2013, vol. 5, no. 4, pp. 290–297. https://doi.org/10.4103/0975-7406.120081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sarfarazi, A., Lee, G., Mirjalili, S.A., et al., Therapeutic delivery to the peritoneal lymphatics: Treatment benefits and future prospects, Int. J. Pharm., 2019, vol. 567, p. 118456. https://doi.org/10.1016/j.ijpharm.2019.118456

    Article  CAS  PubMed  Google Scholar 

  76. Lee, G., Han, S., Inocencio, I., Cao, E., et al., Lymphatic uptake of liposomes after intraperitoneal administration primarily occurs via the diaphragmatic lymphatics and is dependent on liposome surface properties, Mol. Pharm., 2019, vol. 16, no. 12, pp. 4987–4999. https://doi.org/10.1021/acs.molpharmaceut.9b00855

    Article  CAS  PubMed  Google Scholar 

  77. Malinovskaya, Y., Melnikov, P., Baklaushev, V., et al., Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells, Int. J. Pharm., 2017, vol. 524, nos. 1–2, pp. 77–90. https://doi.org/10.1016/j.ijpharm.2017.03.049

    Article  CAS  PubMed  Google Scholar 

  78. Kuo, Y.C. and Chen, Y.C., Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin- and folic acid-grafted poly(lactide-co-glycolide) nanoparticles, Int. J. Pharm., 2015, vol. 479, no. 1, pp. 138–149. https://doi.org/10.1016/j.ijpharm.2014.12.070

    Article  CAS  PubMed  Google Scholar 

  79. Lagas, J.S., Fan, L., Wagenaar, E., et al., P-glycoprotein (P-gp/Abcb1), Abcc2, and Abcc3 determine the pharmacokinetics of etoposide, Clin. Cancer Res., 2010, vol. 16, no. 1, pp. 130–140. https://doi.org/10.1158/1078-0432.CCR-09-1321

    Article  CAS  PubMed  Google Scholar 

  80. Kuplennik, N., Lang, K., Steinfeld, R., and Sosnik, A., Folate receptor α-modified nanoparticles for targeting of the central nervous system, ACS Appl. Mater. Interface, 2019, vol. 11, no. 43, pp. 39633–39647. https://doi.org/10.1021/acsami.9b14659

    Article  CAS  Google Scholar 

  81. Godse, R., Rathod, M., De, A., and Shinde, U., Intravitreal galactose conjugated polymeric nanoparticles of etoposide for retinoblastoma, J. Drug Delivery Sci. Technol., 2021, vol. 61, p. 102259. https://doi.org/10.1016/j.jddst.2020.102259

    Article  CAS  Google Scholar 

  82. Pan, J., Rostamizadeh, K., Filipczak, N., and Torchilin, V.P., Polymeric co-delivery systems in cancer treatment: An overview on component drugs' dosage ratio effect, Molecules, 2019, vol. 24, no. 6, p. 1035. https://doi.org/10.3390/molecules24061035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fatma, S., Talegaonkar, S., Iqbal, Z., et al., Novel flavonoid-based biodegradable nanoparticles for effective oral delivery of etoposide by P-glycoprotein modulation: An in vitro, ex vivo and in vivo investigations, Drug Delivery, 2016, vol. 23, no. 2, pp. 500–511. https://doi.org/10.3109/10717544.2014.923956

    Article  CAS  PubMed  Google Scholar 

  84. Espinoza, S.M., Patil, H.I., San, Martin., Martinez, E., Casanas Pimentel, R., Ige, P.P., Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer, Int. J. Polym. Mater., 2020, vol. 69, no. 2, pp. 85–126. https://doi.org/10.1080/00914037.2018.1539990

    Article  CAS  Google Scholar 

  85. Kalita, N.K., Bhasney, S.M., Mudenur, C., et al., End-of-life evaluation and biodegradation of Poly (lactic acid)(PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions, Chemosphere, 2020, vol. 247, p. 125875. https://doi.org/10.1016/j.chemosphere.2020.125875

    Article  CAS  PubMed  Google Scholar 

  86. Vivek, K., Harivardhan Reddy, L., and Murthy, R.S.R., Comparative study of some biodegradable polymers on the entrapment efficiency and release behavior of etoposide from microspheres, Pharm. Dev. Technol., 2007, vol. 12, no. 1, pp. 79–88. https://doi.org/10.1080/10837450601168581

    Article  CAS  PubMed  Google Scholar 

  87. Kuo, Y.C. and Wang, I.H., Using catanionic solid lipid nanoparticles with wheat germ agglutinin and lactoferrin for targeted delivery of etoposide to glioblastoma multiforme, J. Taiwan Inst. Chem. Eng., 2017, vol. 77, pp. 73–82. https://doi.org/10.1016/j.jtice.2017.05.003

    Article  CAS  Google Scholar 

  88. Xu, Y., Tang, L., Liu, Y., et al., Dual-modified albumin-polymer nanocomplexes with enhanced in vivo stability for hepatocellular carcinoma therapy, Colloids Surf. B, 2021, vol. 201, p. 111642. https://doi.org/10.1016/j.colsurfb.2021.111642

    Article  CAS  Google Scholar 

  89. Xie, P., Yan, J., Wu, M., et al., CD44 potentiates hepatocellular carcinoma migration and extrahepatic metastases via the AKT/ERK signaling CXCR4 axis, Ann. Transl. Med., 2022, vol. 10, no. 12, p. 689. https://doi.org/10.21037/atm-22-2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Spada, A., Emami, J., Tuszynski, J.A., and Lavasanifar, A., The uniqueness of albumin as a carrier in nanodrug delivery, Mol. Pharm., 2021, vol. 18, no. 5, pp. 1862–1894. https://doi.org/10.1021/acs.molpharmaceut.1c00046

    Article  CAS  PubMed  Google Scholar 

  91. Manjushree, M. and Revanasiddappa, H.D., Evaluation of binding mode between anticancer drug etoposide and human serum albumin by numerous spectrometric techniques and molecular docking, Chem. Phys., 2020, vol. 530, p. 110593. https://doi.org/10.1016/j.chemphys.2019.110593

    Article  CAS  Google Scholar 

  92. Akdogan, Y., Reichenwallner, J., and Hinderber-ger, D., Evidence for water-tuned structural differences in proteins: An approach emphasizing variations in local hydrophilicity, PLOS One, 2012, vol. 7. https://doi.org/10.1371/journal.pone.0045681

  93. Osipova, N., Budko, A., Maksimenko, O., et al., Comparison of compartmental and non-compartmental analysis to detect biopharmaceutical similarity of intravenous nanomaterial-based rifabutin formulations, Pharmaceutics, 2023, vol. 15, no. 4, p. 1258. https://doi.org/10.3390/pharmaceutics15041258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Elgohary, M.M., Helmy, M.W., Mortada, S.M., and Elzoghby, A.O., Dual-targeted nano-in-nano albumin carriers enhance the efficacy of combined chemo/herbal therapy of lung cancer, Nanomedicine, 2018, vol. 13, no. 17, pp. 2221–2224. https://doi.org/10.2217/nnm-2018-0097

    Article  CAS  PubMed  Google Scholar 

  95. Narayana, R.V.L., Jana, P., Tomar, N., et al., Carboplatin- and etoposide-loaded lactoferrin protein nanoparticles for targeting cancer stem cells in retinoblastoma in vitro, IOVS, 2021, vol. 62, no. 14, p. 13. https://doi.org/10.1167/iovs.62.14.13

    Article  CAS  Google Scholar 

  96. Akbal, Ö., Erdal, E., Vural, T., et al., Comparison of protein- and polysaccharide-based nanoparticles for cancer therapy: Synthesis, characterization, drug release, and interaction with a breast cancer cell line, Artif. Cells, Nanomed., Biotechnol., 2017, vol. 45, no. 2, pp. 193–203. https://doi.org/10.3109/21691401.2016.1170694

    Article  CAS  PubMed  Google Scholar 

  97. Raval, N., Maheshwari, R., Shukla, H., et al., Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer, Mater. Sci. Eng., C, 2021, vol. 126, p. 112186. https://doi.org/10.1016/j.msec.2021.112186

    Article  CAS  Google Scholar 

  98. Hwang, D., Ramsey, J.D., and Kabanov, A.V., Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval, Adv. Drug Delivery Rev., 2020, vol. 156, pp. 80–118. https://doi.org/10.1016/j.addr.2020.09.009

    Article  CAS  Google Scholar 

  99. Mohanty, A.K., Dilnawaz, F., Mohanty, C., and Sahoo, S.K., Etoposide-loaded biodegradable amphiphilic methoxy (poly ethylene glycol) and poly (epsilon caprolactone) copolymeric micelles as drug delivery vehicle for cancer therapy, Drug Delivery, 2010, vol. 17, no. 5, pp. 330–342. https://doi.org/10.3109/10717541003720688

    Article  CAS  PubMed  Google Scholar 

  100. Letchford, K., Liggins, R., and Burt, H., Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block-polycaprolactone diblock copolymer micelles: Theoretical and experimental data and correlations, J. Pharm. Sci., 2008, vol. 97, no. 3, pp. 1179–1190. https://doi.org/10.1002/jps.21037

    Article  CAS  PubMed  Google Scholar 

  101. Chen, L., Tan, L., Zhang, X., et al., Which polymer is more suitable for etoposide: A comparison between two kinds of drug loaded polymeric micelles in vitro and in vivo?, Int. J. Pharm., 2015, vol. 495, no. 1, pp. 265–275. https://doi.org/10.1016/j.ijpharm.2015.08.043

    Article  CAS  PubMed  Google Scholar 

  102. Ukawala, M., Rajyaguru, T., Chaudhari, K., et al., Investigation on design of stable etoposide-loaded PEG-PCL micelles: Effect of molecular weight of PEG-PCL diblock copolymer on the in vitro and in vivo performance of micelles, Drug Delivery, 2012, vol. 19, no. 3, pp. 155–167. https://doi.org/10.3109/10717544.2012.657721

    Article  CAS  PubMed  Google Scholar 

  103. Shin, H.C., Alani, A.W., Rao, D.A., Rockich, N.C., and Kwon, G.S., Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs, J. Controlled Release, 2009, vol. 140, no. 3, pp. 294–300. https://doi.org/10.1088/1361-6528/aa66ba

    Article  CAS  Google Scholar 

  104. Tsend-Ayush, A., Zhu, X., Ding, Y., Yao, J., Yin, L., Zhou, J., and Yao, J., Lactobionic acid-conjugated tpgs nanoparticles for enhancing therapeutic efficacy of etoposide against hepatocellular carcinoma, Nanotecnology, 2017, vol. 28, no. 19, p. 195602. https://doi.org/10.1088/1361-6528/aa66ba

    Article  CAS  Google Scholar 

  105. Zhu, X., Tsend-Ayush, A., Yuan, Z., et al., Glycyrrhetinic acid-modified TPGS polymeric micelles for hepatocellular carcinoma-targeted therapy, Int. J. Pharm., 2017, vol. 529, nos. 1–2, pp. 451–464. https://doi.org/10.1016/j.ijpharm.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  106. Varshosaz, J., Hassanzadeh, F., Sadeghi, H., Firozian, F., and Mirian, M., Optimization of self-assembling properties of fatty acids grafted to methoxy poly(ethylene glycol) as nanocarriers for etoposide, Acta Pharm., 2012, vol. 62, no. 1, pp. 31–44. https://doi.org/10.2478/v10007-012-0006-1

    Article  CAS  PubMed  Google Scholar 

  107. Mudhakir, D., Sukmadjaja, S.A., and Yeyet, C.S., Packaging the alkaloids of cinchona bark in combination with etoposide in polymeric micelles nanoparticles, Int. J. Pharm. Sci., 2012, vol. 6, no. 12, pp. 685–689. https://doi.org/10.5281/zenodo.1327853

    Article  Google Scholar 

  108. Na, H.S., Lim, Y.K., Jeong, Y.I., Lee, H.S., Lim, Y.J., Kang, M.S., Cho, C.S., and Lee, H.C., Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model, Int. J. Pharm., 2010, vol. 383, nos. 1–2, pp. 192–200. https://doi.org/10.1016/j.ijpharm.2009.08.041

    Article  CAS  PubMed  Google Scholar 

  109. Lim, C., Dismuke, T., Malawsky, D., et al., Enhancing CDK4/6 inhibitor therapy for medulloblastoma using nanoparticle delivery and scRNA-seq-guided combination with sapanisertib, Sci. Adv., 2022, vol. 8, no. 4, p. eabl5838. https://doi.org/10.1126/sciadv.abl5838

  110. Wan, X., Min, Y., Bludau, H., Keith, A., Sheiko, S.S., Jordan, R., Wang, A.Z., Sokolsky-Papkov, M., and Kabanov, A.V., Drug combination synergy in worm-like polymeric micelles improves treatment outcome for small cell and non-small cell lung cancer, ACS Nano, 2018, vol. 12, no. 3, pp. 2426–2439. https://doi.org/10.1021/acsnano.7b07878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim, J.-H., Emoto, K., Iijima, M., Nagasaki, Y., Aoyagi, T., Okano, T., Sakurai, Y., and Kataoka, K., Core-stabilized polymeric micelle as potential drug carrier: Increased solubilization of taxol, Polym. Adv. Technol., 1999, vol. 10, no. 11, pp. 647–654. https://doi.org/10.1002/(SICI)1099-1581(199911)10:11<647::AID-PAT918>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  112. Wang, F., Bronich, T.K., Kabanov, A.V., Rauh, R.D., and Roovers, J., Synthesis and evaluation of a star amphiphilic block copolymer from poly(epsilon-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier, Bioconjugate Chem., 2005, vol. 16, no. 2, pp. 397–405. https://doi.org/10.1021/bc049784m

    Article  CAS  Google Scholar 

  113. Wang, F., Bronich, T.K., Kabanov, A.V., Rauh, R.D., and Roovers, J., Synthesis and characterization of star poly(epsilon-caprolactone)-b-poly(ethylene glycol) and poly(L-lactide)-b-poly(ethylene glycol) copolymers: Evaluation as drug delivery carriers, Bioconjugate Chem., 2008, vol. 19, no. 7, pp. 1423–1429. https://doi.org/10.1021/bc7004285

    Article  CAS  Google Scholar 

  114. Ukawala, M., Rajyaguru, T., Chaudhari, K., Manjappa, A.S., Murthy, R.S.R., and Gude, R., EILDV-conjugated, etoposide-loaded biodegradable polymeric micelles directing to tumor metastatic cells overexpressing α4β1 integrin, Cancer Nanotechnol., 2011, vol. 2, pp. 133–145. https://doi.org/10.1007/s12645-011-0023-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Luiz, M.T., Di Filippo, L.D., Alves, R.C., et al., The use of TPGS in drug delivery systems to overcome biological barriers, Eur. Polym. J., 2021, vol. 142, p. 110129. https://doi.org/10.1016/j.eurpolymj.2020.110129

    Article  CAS  Google Scholar 

  116. Lagarrigue, P., Moncalvo, F., and Cellesi, F., Non-spherical polymeric nanocarriers for therapeutics: The effect of shape on biological systems and drug delivery properties, Pharmaceutics, 2023, vol. 15, no. 1, p. 32. https://doi.org/10.3390/pharmaceutics15010032

    Article  CAS  Google Scholar 

  117. Kennedy, L., Sandhu, J.K., Harper, M.E., and Cuperlovic-Culf, M., Role of glutathione in cancer: From mechanisms to therapies, Biomolecules, 2020, vol. 10, no. 10, p. 1429. https://doi.org/10.3390/biom10101429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jo, M.J., Shin, H.J., Yoon, M.S., et al., Evaluation of pH-sensitive polymeric micelles using citraconic amide bonds for the co-delivery of paclitaxel, etoposide, and rapamycin, Pharmaceutics, 2023, vol. 15, no. 1, p. 154. https://doi.org/10.3390/pharmaceutics15010154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Varshosaz, J., Hassanzadeh, F., Sadeghi, H., Firozian, F., and Mirian, M., Effect of molecular weight and molar ratio of dextran on self-assembly of dextran stearate polymeric micelles as nanocarriers for etoposide, J. Nanomater., 2012, vol. 2012, p. 120. https://doi.org/10.1155/2012/265657

    Article  CAS  Google Scholar 

  120. Agwa, M.M., Abu-Serie, M.M., Abdelmonsif, D.A., Moussa, N., Elsayed, H., Khattab, S.N., and Sabra, S., Vitamin D3/phospholipid complex decorated caseinate nanomicelles for targeted delivery of synergistic combination therapy in breast cancer, Int. J. Pharm., 2021, vol. 607, p. 120965. https://doi.org/10.1016/j.ijpharm.2021.120965

    Article  CAS  PubMed  Google Scholar 

  121. Carlberg, C. and Munoz, A., An update on vitamin D signaling and cancer, Semin. Cancer Biol., 2022, vol. 79, pp. 217–230. https://doi.org/10.1016/j.semcancer.2020.05.018

    Article  CAS  PubMed  Google Scholar 

  122. Gaber, M. Elhasany, K.A., et al., Co-administration of tretinoin enhances the anti-cancer efficacy of etoposide via tumor-targeted green nano-micelles, Colloids Surf., B, 2020, vol. 192, p. 110997. https://doi.org/10.1016/j.colsurfb.2020.110997

    Article  CAS  Google Scholar 

  123. Alliot, J., Theodorou, I., Nguyen, D.V., Forier, C., Ducongé, F., Grave, E., and Doris, E., Tumor targeted micellar nanocarriers assembled from epipodophyllotoxin-based amphiphiles, Nanoscale, 2019, vol. 11, no. 19, pp. 9756–9759. https://doi.org/10.1039/C9NR01068H

    Article  CAS  PubMed  Google Scholar 

  124. Alliot, J., Theodorou, I., Ducongé, F., Gravel, E., and Doris, E., Polyamine transport system-targeted nanometric micelles assembled from epipodophyllotoxinamphiphiles, Chem. Commun., 2019, vol. 55, no. 99, pp. 14968–14971. https://doi.org/10.1039/c9cc07883e

    Article  CAS  Google Scholar 

  125. Leonard, A. and Wolff, J.E., Etoposide improves survival in high-grade glioma: A meta-analysis, Anticancer Res., 2013, vol. 33, no. 8, pp. 3307–3315.

    CAS  PubMed  Google Scholar 

  126. Mehta, A., Awah, C.U., and Sonabend, A.M., Topoisomerase II poisons for glioblastoma; Existing challenges and opportunities to personalize therapy, Frontiers in Neurology, 2018, vol. 9, p. 459. https://doi.org/10.3389/fneur.2018.00459

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lagas, J.S., Fan, L., Wagenaar, E., Vlaming, M.L., van Tellingen, O., Beijnen, J.H., and Schinkel, A.H., P‑glycoprotein (P-gp/Abcb1), Abcc2, and Abcc3 determine the pharmacokinetics of etoposide, Clin. Cancer Res., 2010, vol. 16, no. 1, pp. 130–140. https://doi.org/10.1158/1078-0432.CCR-09-1321

    Article  CAS  PubMed  Google Scholar 

  128. Bart, J., Groen, H.J., van der Graaf, W.T., Holle-ma, H., Hendrikse, N.H., Vaalburg, W., Sleijfer, D.T., and de Vries, E.G., An oncological view on the blood-testis barrier, The Lancet Oncology, 2002, vol. 3, no. 6, pp. 357–363. https://doi.org/10.1016/s1470-2045(02)00776-3

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 23-25-00194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Merkulova.

Ethics declarations

The authors declare that they have no conflicts of int-erest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkulova, M.A., Osipova, N.S., Kalistratova, A.V. et al. Etoposide-Loaded Colloidal Delivery Systems Based on Biodegradable Polymeric Carriers. Colloid J 85, 712–735 (2023). https://doi.org/10.1134/S1061933X23600744

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600744

Keywords:

Navigation