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Abstract—A calculation model of X-ray computed tomography with a density assessment function in
the geometry of a parallel beam has been proposed. The model includes blocks for simulating and cor-
recting sinograms and reconstructing section images. When generating sinograms, the parameters of
the test object, source, and recorder of X-ray radiation have been taken into account. Modeling algo-
rithms are implemented in the MathCad system and tested on virtual test objects.
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INTRODUCTION
In recent decades, there has been a steady increase in interest in X-ray computed tomography (CT) as

a method for studying the structure of various test objects with steel dimensions from fractions of milli-
meters to hundreds of millimeters [1–4]. Prospects for the development of computed tomography are cur-
rently associated with measuring linear dimensions, areas, volumes, density, porosity, etc. [5–8]. The
tasks of designing computed tomography systems are determined by consumer interests [9–11]. The rele-
vant information is divided into two groups. The first group includes parameters related to the test object:
shape, internal structure, and material of fragments. The second group consists of consumer expectations
regarding the quality of computed tomography: contrast sensitivity, spatial resolution, the accuracy of the
measured parameter assessment, the quality of reproduction of the internal structure by phantoms, and
performance. Structurally, computed tomography systems [12] consist of an X-ray source (XRS), an
X-ray recorder (XRR), a mechanical system (MS), and a reconstruction algorithm (RA). The solution to
the design problem is reduced to a rational assessment of the required parameters of X-ray source, X-ray
recorder, mechanical system, and reconstruction algorithms, the selection of the characteristics for the
scanning scheme, and the subsequent selection of structural elements of the computed tomography sys-
tem from instruments and components available on the scientific equipment market.

The components of computed tomography systems are very expensive; therefore, to assess the possi-
bility of solving computed tomography design problems for specific test objects, it is effective to use com-
putational experiments [13–16]. The simplest scanning scheme in computed tomography is the geometry
of a narrow parallel beam [12]. For this scheme, the scattering artifact is minimal [12, 17]. The computa-
tional model of the computed tomography system consists of forming a set of projections (sinograms) and
of image reconstruction. The back-projection algorithm with filtering (BPF) [12, 18, 19] continues to be
one of the demanded reconstruction algorithms for computed tomography images; therefore, when devel-
oping a computational model of a computed tomography system with a density assessment function, we
will use the BPF algorithm.

In addition to solving design problems, computational computed tomography models and software
implementing them [20] are necessary for teaching students and postgraduates. It should be noted that,
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Fig. 1. Scheme of projection formation in X-ray computed tomography: (1) X-ray radiation source; (2) test object; (3) linear
X-ray recorder; (4) a circle describing the section of the test object.
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with the above taken into account, the MathCad system [21] is ideally suited for the implementation of
computational computed tomography models, since its internal language corresponds as much as possible
to the natural mathematical language.

1. COMPUTATIONAL MODEL FOR FORMATION OF SINOGRAMS

1.1. Generalized Description of the Object Layer

Let us introduce a fixed coordinate system  Let  be the set of points of the test object
layer. The test object layer is completely determined if at any point with coordinates  the values
of the density  and the effective atomic number (EAN)  are known.

1.2. Geometric Scheme of Projection Formation

Figure 1 shows the geometric scheme for the formation of projections in X-ray computed tomography.
The origin of the fixed  coordinate system coincides with the test object rotation center. The addi-
tional coordinate system  refers to the test object. The coordinates of a point in the  and 
coordinate systems are related to each other by a rotation transformation through an angle θ:

(1)

The projection in the computed tomography  is the -distribution of the integral of the infor-
mative parameter of the test object  along the corresponding -ray, . Here  ranges from  to

, and for any point  the following condition is satisfied:  Let us write the
definition of a projection as a formula,

(2)

For an informative parameter  characterizing the material, the computed tomography uses [22, 23]:
the linear radiation attenuation coefficient (LAC) , the Hounsfield number, the density  and the effec-
tive atomic number  The test object material is most fully characterized by  and 
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1.3. Generalized Model of Projection Formation in X-ray Computed Tomography
Models of digital radiographic imaging can be used as the basis for the model of projection formation

in computed tomography [24–26]. An expression for how digital signals (DS) from detectors  are
connected with the estimate of the projection  has the form

(3)

here  is the digital signal from the detector with switched off X-ray source (dark signals), and
 is the digital signal from the detector without a test object.

For an X-ray source with energy spectrum , where  is the maximum radiation energy,
and a radiation-sensitive element (RSE) of thickness  operating in integrated recording mode, the ana-
log signals (AS)  that correspond to the digital signal  are estimated using a for-
mula similar to the expression from [25],

(4)

where  is the factor of conversion of the absorbed radiation energy into the analog signal;
 is the number of photons hitting the front surface of the radiation-sensitive element without

a test object during projection formation;  is the average value of energy transmitted to the radi-
ation-sensitive element by a recorded photon with energy  and  is the efficiency of recording. In
formula (4)  is the projection for photons with energy  when the informative
parameter  is the linear attenuation coefficient of radiation. For a radiation-sensitive element with small
dimensions, it is necessary to take into account the leakage and transfer of energy to the environment and
to neighboring elements.

The expression for calculating  is

(5)

where  is the mass coefficient of attenuation (MAC) by material with atomic number  of radi-
ation with energy  Note that  for  coincides with , and for

, with 
Analog signals  are transformed into digital signal:

(6)

here  is the digit capacity of the analog-to-digital converter (ADC);  , is the coefficient
limiting the digital signal to the level of  in the case of analog signal f luctuations.

The set of formulas (1)–(6) is a generalized model of the formation of projections in X-ray computed
tomography.

1.4. Formation of Sinograms in X-ray Computed Tomography
A computed tomography sinogram is a collection of projections. It is an  matrix , where  is

the number of points in the projection and  is the number of projections. The quality of the reconstruc-
tion of the sections in the computed tomography is determined by the parameters  and  which are
related to the size of the radiation-sensitive element  and the step in the angle  by the relations
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The sinogram formation expression is as follows:

(8)

For a visual check of the quality of the initial data in computed tomography, sinograms are presented
in graphical form.

2. RECONSTRUCTION OF CROSS SECTION IMAGES IN X-RAY COMPUTED 
TOMOGRAPHY METHOD BY BACK PROJECTION WITH FILTERING

A sinogram is sent to the input of the initial information processing unit. The result of sinogram pro-
cessing is the distribution of the informative parameter over the test object section. The reason for choos-
ing the BPF method as the reconstruction algorithm of cross section images was noted above.

At the first stage of the algorithm, the initial projections  are filtered using some filter 

(9)

Filters with Ramachandran–Lakshminarayanan (RL) [27] and Shepp–Logan (SL) [28] kernels are
most often used as filters in computed tomography.

At the second stage, inverse convolution is implemented, the purpose of which is to estimate the dis-
tribution of the information parameter over the test object section 

(10)

Expressions (9) and (10) make it possible to estimate any function defined on a section for which the
complete set of projections (sinogram) is known.

3. ALGORITHM FOR COMPUTATIONAL MODELING OF FORMATION
AND PROCESSING OF SINOGRAMS IN COMPUTED TOMOGRAPHY

The algorithm for computational modeling of sinograms and reconstruction of images of sections in
computed tomography consists of several main blocks: initial data of the computed tomography system;
setting of auxiliary functions for attenuation and recording of radiation; description of the test object sec-
tion; formation of an ideal sinogram; selection of a rational value for the maximum energy of X-ray radi-
ation; the formation of calibration functions of the dependences of the mass thicknesses of the test objects
on the their thicknesses in free path lengths (f.p.l.); formation of sinograms; formation of corrected sino-
grams with their graphic display; and reconstruction of cross section images.

3.1. Initial Data of X-ray Computed Tomography System
In accordance with the adopted scheme for the formation of sinograms in X-ray computed tomogra-

phy, the initial data of the system include: the half-width of the linear X-Ray recorder  mm; the trans-
verse dimension of radiation-sensitive element  mm; the radiation-sensitive element thickness  mm;
the radiation-sensitive element material; and the angle step  rad.

3.2. Setting Auxiliary Radiation Attenuation and Recording Functions
The primary data for this block are borrowed from open libraries on the attenuation of gamma radia-

tion (for example, [29]) and are summarized in tables of mass radiation coefficient of attenuation by sub-
stance in the range of atomic number from  (hydrogen) to  (lead). Three vectors correspond
to each value of  the energy levels of gamma radiation  the gamma radiation MAC  and the average
value of absorbed energy 

This block specifies: the functions  interpolating the dependences of the MAC  on the gamma
radiation energy  for substances ranging from hydrogen to lead; the radiation source energy spectrum

; the energy dependences of the radiation-sensitive element detection efficiency  based
on its thickness and material; and an interpolation for the functions 
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3.3. Description of Test Object Section
It was noted above that the test object section is determined by the distributions of the density 

and the effective atomic number . It follows from the analysis of expressions (3)–(6) that
the performance of the modeling algorithm depends on the complexity of calculating the energy depen-
dence . In [25], the efficiency of replacing the integrals in (4) and (5) by parametric interpola-
tion dependences, for example, on the mass thickness, was noted. The indicated approach can be easily
implemented for a test object for which  Let us dwell on test objects of the kind.

In computed tomography, full-scale and virtual phantoms are widely used, which consist of fragments
with sections of regular shapes. Most often, circles and squares are used as simple shapes. Here are the
descriptions of the test object with such fragments.

3.3.1. Sections of Fragments in the Form of Circles
Consider a cylindrical shell with noncontacting cylindrical inclusions of various densities. The axes of

the inclusions are parallel to the axis of the cylindrical shell. We will consider sections perpendicular to the
shell axis. Such sections are made up of fragments in the form of circles. In this case, the test object section
is described by a set of vectors  with dimension  and parameters  Here  is the
vector of the radii of the fragments,  is the vector of the radii of the centers of the fragments,  is the
vector of the material densities of the fragments,  is the vector of the angular coordinates of the centers
of the fragments, and  are the coordinates of the displacement of the axis of rotation. Let

 be the number of the fragment,  corresponds to the shell itself,  to the axial cavity,
and  to the inclusions.

3.3.2. Sections of Fragments in the Form of Squares
Thick-walled pipes with a square cross section are a typical representative of test objects with sections

of fragments in the form of squares. For the considered test object, all sections of the fragments have the
shape of a square. The test object section is determined by a set of vectors  with dimen-
sion  and parameters  and  Here  is the vector of the radii of the circles inscribed in the fragments;

 are the vectors of the coordinates of the centers of the fragments;  is the vector of the material
density of the fragments;  is the vector of the angles of rotation of the fragments, and  are the
coordinates of the displacement of the axis of rotation. Fragment numbering is the same as described
above:  corresponds to the shell;  to the axial cavity, and  to shell inclusions.

3.4. Formation of Ideal Sinograms
A sinogram is called ideal if the informative parameter is the density ρ. To form a sinogram, we will use

an approach similar to the additive algorithm for modeling radiographic images [25].
In accordance with [25], the expression for the formation of an ideal sinogram is as follows:

(11)

here  are the thicknesses of the test object fragments along the ray passing through a
point 

The complexity of calculating ideal sinograms by formula (11) is determined by the shape of the frag-
ments of the test object section. Let us illustrate this for circles and squares.

3.4.1. Estimation of the beam thicknesses for cross sections of fragments in the form of a circle

The formula for estimating the thicknesses of the fragments with numbers  is

(12)

Expression (12) in combination with (1) is easily implemented in the MathCad system.
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3.4.1. Estimation of the beam thicknesses for cross sections of fragments in the form of a square

A square is defined by the coordinates of its center and the coordinates of the corner points. Therefore,
at the first stage, the specified coordinates are calculated for the th fragment. Let there be a local Carte-
sian coordinate system  anchored at the center of a square fragment, with its axes parallel to the

sides of the square. The set of coordinates of corner points of fragments  in the corre-
sponding local coordinate systems is described by the expression

(13)

Taking into account the rotation of the square fragments by the angles  and the displacement of the
centers in the  system, the coordinates of the corner points are calculated by the formula:

(14)

The coordinates in the  coordinate system are calculated in a similar way, obtained by rotating
the  system relative to the point  by the angle 

(15)

Further, for , the matrices  are sorted by the first column in ascending order:

(16)

here  is the sorting procedure by the first column in ascending order.
The estimate of the thickness of the fragments along the beam is found using the formula
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Expressions (13)–(17) make it possible to estimate the beam thicknesses of sections of fragments in the
form of a square for any values of  and 

The above formulas (12)–(17) are the basis of algorithms for the formation of ideal sinograms for sec-
tions of fragments in the form of a circle and a square.

3.5. Selecting the Maximum X-ray Energy

The choice of the maximum energy of X-ray radiation has a significant effect on the quality of recon-
struction of images of cross sections in computed tomography [30]. The equation for selection of  is
similar to the equation specified in [30],

(18)

The right-hand side of Eq. (18) can be decreased or increased. The value
 is equal to the maximum mass thickness of the test object.

3.6. Formation of Calibration Functions, Dependences of the Mass Thicknesses of Test Objects 
on Their Thicknesses in Free Path Lengths

It follows from the definition of an ideal sinogram that it is necessary to estimate the mass thickness of
the test objects for all beams. For this, the results of a full-scale or computational experiment are used to
determine the dependences of the X-ray attenuation coefficients on the mass thickness 

We will use the algorithm for the formation of calibration functions for EAN -homogeneous test
objects given in [31]. A stepped object with steps of thickness from  g/cm2 to

 acts as a test object. The formula of relationship between the estimate of the
thickness of the test object in f.p.l.  and the mass thickness  has the form

(19)

The table  is fed to the input of the algorithm for forming the
calibration functions. The analytical function  is constructed on the basis of table 

(20)

Formula (20) allows one to evaluate ideal sinograms by real ones.

3.7. Formation of Real Sinograms and Their Graphic Display

The input of the algorithm for generating sinograms based on expressions (3)–(8) receives an ideal
sinogram. This sinogram for the test object, consisting of a finite number of fragments with different
densities, is described by expression (11). For a detailed implementation of the algorithm being carried
out for specific shapes of fragments of sections of the test object, for example, circles and squares,
see (12)–(17). As a result of applying the algorithm to a specific test object, an ideal sinogram

 is formed.
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Relationship between the ideal sinogram  and the real sinogram 

is described by the expression

(21)

The synogram  is converted into a grayscale image  as follows:

(22)

The graphical representation of the sinogram is necessary not only for the visual presentation of infor-
mation in one image, but also for the analysis of possible distortions during scanning or computational
modeling.

3.8. Correction of Sinograms
In sinograms, the test object thicknesses along the rays are measured in f.p.l., which makes it impossi-

ble to accurately estimate the density distribution over the cross section of the object by the computed
tomography method. Correction of sinograms is reduced to recalculation of the thickness of the test object
along the rays in the f.p.l. into mass thicknesses of test object along the corresponding rays.

The sinogram  is corrected in accordance with the transformation (20). The expression for the for-
mation of the final sinogram  is

(23)

The graphical image of the sinogram  is formed similar to formula (22).

3.9. Reconstruction of Section Images by the Inverse Convolution Method with Filtering
The algorithm and the program for reconstructing images of test object cross sections in computed

tomography are independent and linked with each other by a text file. A sinogram is written in a text file, for
example, the  matrix. The file name contains information about the radiation-sensitive element size .

After reading the matrix  the number of detectors in the line  and the number of projections 
are determined:

(24)

here  and  are the numbers of rows and columns in the matrix 
Next, filters with RL and SL kernels are set.

3.9.1. Ramachandran–Lakshminarayanan and Sheppa–Logan Filters

The Ramachandran-Lakshminarayanan filter  is defined by the formula [27]
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The expression for the Shepp–Logan filter  has the form [28]

(26)

3.9.2. Filtering Initial Projections

The filtering of the initial projections  is carried out in accordance with expression (8), which in dis-
crete form looks as follows:

(27)

In expression (27), a filter with the RL kernel  (26) or a filter with the SL kernel  (27) or their
modifications are used as the filter 

3.9.3. Back Projection

The filtered  projection is input into the back projection unit. In accordance with formula (9), the
estimate of the informative parameter at the point of the section  is the integral over all rays passing
through the marked point.

In the case under consideration, the informative parameter is the density  therefore, the estimate for
the density  at a point with coordinates  is found by the formula:

(28)

The function  for a fixed value of  is an interpolation of the discrete dependence of
 on 

3.9.4. Cross Section Imaging

At the first stage, a digital image is formed  representing the distribution of the estimate of the infor-
mative parameter (density) over the test object section.

Let the image have the shape of a rectangle with dimensions of  pixels. Then the matrix
 is described by the expression

(29)

At the second stage, based on the image , the corresponding grayscale image  is formed according
to a formula similar to (23).

The aim of this work is to construct a computational model of X-ray computed tomography with esti-
mation of density over the test object cross section; therefore, the image  is processed in order to deter-
mine the deviations of the density estimates from their real values.

4. EXAMPLES OF SIMULATION AND PROCESSING OF SINOGRAMS 
IN COMPUTED TOMOGRAPHY

To illustrate the capabilities of the algorithms for modeling sinograms, their correction, and recon-
struction of density distributions over test object sections, we selected objects with the sections of frag-
ments in the shape of a circle and a square. All test object fragments are homogeneous in EAN ( )
but vary in density.

The developed algorithms are implemented in the MathCad 15 system in the form of programs for gen-
erating sinograms and image reconstruction. The program for generating sinograms is universal, with the
exception of the test object description block with the calculation of its thickness by rays. The reconstruc-
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Fig. 2. Object with sections of fragments in the form of circles: (a) sinogram; (b) reconstruction (RL filter); (c) recon-
struction (SL filter).

(c)(b)(а)
tion program is universal; it contains switchable blocks for calculating the coefficients of the RL and SL
filters. The above programs are connected through a text file corresponding to the  sinogram.

The array of X-ray detectors has a size of  mm. The radiation-sensitive element material is cad-
mium tungstate, the radiation-sensitive element transverse dimension is  mm, and the radiation-
sensitive element thickness is  = 0.3 mm. A total of  = 106 photons fall on the front surface of each
radiation-sensitive element.

4.1. Object with Sections of Fragments in the Form of a Circle

The test object section is characterized by the following parameters: the outer radius of the thick-
walled cylindrical shell  mm; the radius of the inner cylindrical cavity  mm; the radii of local
shell fragments,  mm; the radial coordinates of the centers of the fragments are

 mm,  mm; the angular coordinates of the centers of the frag-
ments  and the material density of the fragments  g/

 g/  (i − 2) g/  i = 3…14.

The number of projections is . The maximum value of the mass thickness along the rays for
the object under consideration is  g/  The rational value for the maximum energy of X-ray
radiation was chosen based on condition (19) at  keV.

Figure 2 shows the images of the sinogram for the section of the analyzed object and the images of the
section reconstructed by the BPF method.

The sinogram formation time for the object under study on a laptop with an Intel (R) Core (TM) i5-83000H
CPU with a frequency of 2.30 GHz does not exceed 85 s. The image reconstruction time with the RL filter
does not exceed 11 minutes, and with the SL filter it is 10.3 minutes. The specified performance of the
programs is sufficient for use in the educational process and for a detailed analysis of the influence of the
parameters of X-ray computed tomography systems on the quality of image reconstruction in the imaging
mode. The reconstructed images for the RL and SL filters are close to each other in quality.

To assess the quality of modeling of computed tomography systems operating in the mode of measur-
ing density distributions over the test object section, we determine the dependence of the density  on the
angle ϕ along a circle with a radius of  mm centered at the geometric center of the section.
The formula for estimating the dependence  has the form

(30)

Figure 3 shows copies of the graphs produced by the MathCad program for dependences  with the
employed RL and SL filters.

It can be concluded from the analysis of the graphs shown in Fig. 3 that the density distribution over
the cross section of the considered test object obtained by the computed tomography method for recon-
struction using the back projection method with RL and SL filtering is highly accurate.
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Fig. 3. Angular dependences  for TO with sections of fragments in the form of circles: (a) filter with RL kernel;
(b) filter with SL kernel.
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Fig. 4. Object with sections of fragments in the form of squares: (a) sinogram; (b) reconstruction (RL filter); (c) recon-
struction (SL filter).

(c)(b)(а)
4.2. Object with Sections of Fragments in the Form of a Square

The sections of the considered test objects are characterized by the following parameters: the radius of the
circle inscribed in a thick-walled shell with a square section  mm; the radius of the circle inscribed in
the inner cavity with a square section  mm; the radii of the circles inscribed in the sections of square
fragments located inside the shell,  mm; the coordinates of the centers of the fragments

 mm,  mm,  mm,  mm,
 mm,  mm,  mm,  mm,  mm,  mm,

 mm,  mm,  mm,  mm,  mm,  mm; the
angles of rotation of the fragments  and the material density of the

fragments  g/ ,  g/ ,  (i − 2) g/ , .
The number of projections is . The maximum mass thickness along the rays for the object

under consideration is  g/ . The rational value for the maximum X-ray radiation energy was
chosen based on condition (19) at  keV.

Figure 4 shows the images of the sinogram for the cross section of the investigated test object and the
results of reconstruction. Filters with RL and SL kernels were used in the BPF algorithm.

The sinogram simulation time for the analyzed test object on a laptop with an Intel (R) Core (TM) i5-83000H
CPU with a frequency of 2.30 GHz does not exceed 129 s. The time of forming images of cross sections
with the RL filter does not exceed 15 minutes, and with the SL filter—14 minutes. This performance of
the programs is sufficient for use in the educational process and for a thorough analysis of the influence
of the parameters of X-ray computed tomography systems on the quality of visualization of cross section
images. The rendered images for the RL and SL filters are close to each other in quality.
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Fig. 5. Angular dependences  for test object with sections of fragments in the form of squares: (a) filter with RL ker-
nel; (b) filter with SL kernel.
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For the considered test object, the accuracy of measuring the dependence of density  from the
angle  is estimated along the line connecting the centers of the local fragments of the shell. Figure 5
shows copies of the graphs produced by the MathCad program for dependences  in relation to the
investigated test object for RL and SL filters. Comparison of the graphs confirms the conclusion about
the high accuracy of estimating the density distribution over the cross section of the analyzed object by the
computed tomography method for reconstruction by the BPF method with RL and SL filters.

5. DISCUSSION
The reconstructions of the internal structure of the test object with sections of fragments in the form

of circles and similar objects from [32] visually have the same quality level. We come to the same con-
clusion as a result of comparing Figs. 4b and 4c with the reconstructed images of the cross sections of
a universal phantom for computed tomography with similar fragments [33]. In both cases, the accuracy
of density estimation for similar fragment materials is not inferior to the corresponding experimental
values from [32]. From the above, we can draw a conclusion about the adequacy of the developed com-
putational model for test objects made of materials homogeneous in EAN with fragments with sections
in the form of a circle and a square.

Let us briefly discuss the approaches to estimating the density distribution by the computed tomogra-
phy method for test objects with more complex sections of fragments or with fragments differing in EAN.

5.1. Cross Section of an Object with Complex Shaped Fragments Made 
of Materials Homogeneous in Effective Atomic Number

The specificity of the test object affects exclusively the process of forming sinograms.
The approach in [25] can be used to modify the block for describing the test object sections. This

approach is based on expression (11) using information about the shapes, sizes, and materials of fragments
of the test object section. In [25], the idea is also mentioned, according to which, based on the image of a
fragment with small pixels, images with pixels of much larger size are constructed. Let us modify this idea
by changing the method of obtaining the initial images of fragments.

The shape and size of technical objects are known and, as a rule, documented with drawings. In accor-
dance with the above, it is sufficient to consider the principle of describing one fragment of a complex
shape. Let some continuous closed curve  be given on the plane; the curve is the outer boundary of
some plane figure (fragment)  The sectional drawing of a fragment can be presented on paper or in elec-
tronic form. The drawing is converted into a digital image in *.bmp format with the highest possible res-
olution. The digital image is transformed into an ideal sinogram, which is processed according to the algo-
rithm described above.

Figure 6 shows a true image of the cross section of an aluminum test object in the form of a star with
sixteen rays, the sinogram, and the results of reconstruction. The radius of the circumscribed circle is

( )cρ ϕ�

ϕ
( )cρ ϕ�

W

.Φ
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Fig. 6. Object with fragment sections in the form of a star: (a) object section image; (b) sinogram; (c) reconstruction (SL
filter).

(b)(а) (c)
 mm, and the radius of the inscribed circle is  mm. The number of projections is .
The number of detectors in the array is . The maximum value of the mass thickness along the rays
for the object under study is  g/ , and  keV.

The time to form the sinogram is approximately an hour, with most of it is spent on evaluating the ideal
projections. The reconstruction time is close to 13 min. The visual high quality of the reconstruction should
be noted. The density estimation error does not exceed 2%. In general, the quality of the reconstruction is
close to the quality of the experimental images of the cross sections given in [34] for the gearwheel test object.

5.2. Sections of objects with fragments differing in 
The presence of fragments with materials with different EANs in the test object leads to a significant

shift in the density estimates. To eliminate the noted shift, the dual-energy methods (DEM) are used in
computed tomography. The dual-energy methods in computed tomography are based on transillumina-
tion of the test object with gamma or X-rays with two energies [35, 36] and the subsequent estimation of
the EAN and density distributions. The maximum productivity is achieved by the implementation of the
DEM [37], in which monoenergetic gamma radionuclides are used as radiation sources.

The energy spectra of monoenergetic radionuclides are described by -functions. In accordance with
this and formulas (4) and (5), the system connecting the parameters of the test object and the projection
for the energies of gamma radiation  and  has the following form:

(31)

Two sinograms  and  are formed in the program for simulating sinograms. The LAC of radiation
acts as an informative parameter in the reconstruction of cross section images, but the representation of
the projections in the form (31) allows the necessary modification of the algorithm in order to simultane-
ously estimate the distributions of density —  and EAN — . As a result of the reconstruc-
tion, the following distributions are estimated:

(32)

Estimation of the EAN distribution  is carried out by a formula close to [36],

(33)

The function  is determined at the stage of calibration tests on samples made of various materials that
differ in EAN. Consider a test object with sections of fragments in the form of circles with variation in density
and EAN. The fragment sizes and parameters are identical to those in Sec. 4.1. The local fragments in the
shell are divided into six groups:  

  

and  The scan parameters are identical to the example in Sec. 4.1.
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Fig. 7. Test object section with fragments differing in material EAN: (a) sinogram for energy E1; (b) sinogram for
energy E2; (c) LAC reconstruction for energy E1; (d) LAC reconstruction for energy E2; (e) reconstruction of ρ;
(f) reconstruction Z.

(a)

(c) (d) (e) (f)

(b)
Figure 7 shows the sinograms for the -radiation energies  keV and  keV, the results
of preliminary reconstruction, and the estimates of the distributions of EAN and density. The following
palette was applied:  red;  yellow;  green;  light blue;  blue;  bright
purple; and Z = 29 black.

The formation time of two sinograms for monoenergetic radiation sources on the aforementioned lap-
top does not exceed two minutes. The total reconstruction time is close to half an hour. The data presented
in Fig. 7 illustrate the possibility of simultaneous estimation of the density and EAN distributions over the
test object section. The errors in the estimates of the density and EAN of the materials of the test object
fragments obtained as a result of the computational experiment do not exceed the levels of errors in the
estimates of the density and the EAN of the materials of the fragments of the test object fragments with a
similar structure [37].

CONCLUSIONS
A computational model of X-ray computed tomography with the function of estimating the density

distribution over the cross section of the test object in the parallel beam geometry has been presented.
The modeling algorithm consists of a block for generating sinograms and a block for reconstructing the

images of object sections. The mathematical model is implemented in the MathCad software for engi-
neering calculations. The performance of the algorithm is illustrated for objects with fragments with sec-
tions in the shape of circles and squares and are homogeneous in effective atomic number of material. The
possibility of studying objects with complex shaped cross sections of fragments is demonstrated using the
example of a multibeam star. The proposed modeling algorithm is supplemented by the dual energy
method, which allows one to simultaneously estimate the distributions of density and effective atomic
number over the cross section of the object. The efficiency of the dual-energy method is illustrated by the
example of objects with fragments with sections in the form of circles with varying density and effective
atomic number of the fragment material. The developed computational models and software implement-
ing them in the MathCad system are intended for the selection and evaluation of the parameters of X-ray
computed tomography systems with the function of density estimation over the cross section of the object
under study at the design stage and for use in the educational process.
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