Skip to main content
Log in

Quantum teleportation with continuous variables: A survey

  • Published:
Laser Physics

Abstract

Very recently, we took part in a new development of quantum information, the so-called continuous variable (CV) quantum information theory. Such a further development is mainly due to the experimental and theoretical advantages offered by CV systems, i.e., quantum systems described by a set of observables, like position and momentum, which have a continuous spectrum of eigenvalues. According to this novel trend, quantum information protocols like quantum teleportation have been suitably extended to the CV framework. Here, we briefly review some mathematical tools relative to CV systems, and we consequently develop the concepts of quantum entanglement and teleportation in the CV framework by analogy with the qubit-based approach. Some connections between teleportation fidelity and entanglement properties of the underlying quantum channel are inspected. Next, we address the study of CV quantum teleportation networks where more users share a multipartite state and an arbitrary pair of them performs quantum teleportation. In this context, we show alternative protocols, and we investigate the optimal strategy that maximizes the performance of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bennett, G. Brassard, C. Crepeau, et al., Phys. Rev. Lett. 70, 1895 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).

    Article  ADS  Google Scholar 

  3. S. Popescu, Phys. Rev. Lett. 72, 797 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. R. F. Werner, Phys. Rev. A 40, 4277 (1989).

    Article  ADS  Google Scholar 

  5. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 84, 2014 (2000); V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997); S. Parker, S. Bose, and M. B. Plenio, Phys. Rev. A 61, 032305 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Horodecki, M. Horodecki and P. Horodecki, Phys. Lett. A 222, 21 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Quantum Information Theory with Continuous Variables, Ed. by A. K. Pati and S. L. Braunstein (Academic, London, 2002); S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).

    Google Scholar 

  9. P. van Loock, Fortschr. Phys. 50, 1177 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  10. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, New York, 1994).

    MATH  Google Scholar 

  11. R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A 36, 3868 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Eisert and M.B. Plenio, Int. J. Quantum Inform. 1, 479 (2003).

    Article  MATH  Google Scholar 

  13. J. Williamson, Am. J. Math. 58, 141 (1936); R. Simon, S. Chaturvedi, and V. Srinivasan, J. Math. Phys. 40, 3632 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  14. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, New York, 2004).

    MATH  Google Scholar 

  15. A. S. Holevo, M. Sohma, and O. Hirota, Phys. Rev. A 59, 1820 (1998); A. S. Holevo and R. F. Werner, Phys. Rev. A 63, 032312 (2001).

    Article  ADS  Google Scholar 

  16. A. Serafini, F. Illuminati, and S. De Siena, J. Phys. B: At. Mol. Opt. Phys. 37, L21 (2004).

    Article  Google Scholar 

  17. R. Simon, Phys. Rev. Lett. 84, 2726 (2000).

    Article  ADS  Google Scholar 

  18. S. Pirandola, quant-ph/0511255.

  19. G. Vidal, J. Mod. Opt. 47, 355 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  20. G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).

    Google Scholar 

  21. G. Adesso, A. Serafini, and F. Illuminati, Phys. Rev. A 70, 022318 (2004).

    Google Scholar 

  22. L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).

    Article  ADS  Google Scholar 

  23. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    Article  MATH  ADS  Google Scholar 

  24. N. Lütkenhaus et al., Phys. Rev. A 59, 3295 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  25. S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, J. Mod. Opt. 47, 267 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  26. S. L. Braunstein, C. A. Fuchs, H. J. Kimble and P. van Loock, Phys. Rev. A 64, 022321 (2001).

    Google Scholar 

  27. L. Vaidman, Phys. Rev. A 49, 1473 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  28. S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869 (1998).

    Article  ADS  Google Scholar 

  29. G. M. D’Ariano, P. Lo Presti, and M. F. Sacchi, Phys. Lett. A 272, 32 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  30. A. V. Chizhov, L. Knöll, and D.G. Welsch, Phys. Rev. A 65, 022310 (2002).

    Google Scholar 

  31. J. Fiurášek, Phys. Rev. A 66, 012304 (2002).

    Google Scholar 

  32. S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, J. Mod. Opt. 51, 901 (2004).

    Article  MATH  ADS  Google Scholar 

  33. A. Furusawa, J. L. Sørensen, S. L. Braunstein, et al., Science 282, 706 (1998).

    Article  ADS  Google Scholar 

  34. G. Adesso and F. Illuminati, Phys. Rev. Lett. 95, 150503 (2005).

    Google Scholar 

  35. J. Jing, J. Zhang, Y. Van, et al., Phys. Rev. Lett. 90, 167903 (2003); T. Aoki, N. Takei, H. Yonezawa, et al., Phys. Rev. Lett. 91, 080404 (2003).

  36. A. M. Lance, T. Symul, W. P. Bowen, et al., Phys. Rev. Lett. 92, 177903 (2004).

  37. H. Yonezawa, T. Aoki, and A. Furusawa, Nature (London) 431, 430 (2004).

    Article  ADS  Google Scholar 

  38. P. van Loock and S. L. Braunstein, Phys. Rev. Lett. 84, 3482 (2000).

    Article  ADS  Google Scholar 

  39. S. L. Braunstein, Nature (London) 394, 47 (1998).

    Article  ADS  Google Scholar 

  40. N. J. Cerf, A. Ipe, and X. Rottenberg, Phys. Rev. Lett. 85, 1754 (2000); S. L. Braunstein, N. J. Cerf, S. Iblisdir, et al., Phys. Rev. Lett. 86, 4438 (2001).

    Article  ADS  Google Scholar 

  41. P. van Loock and S. L. Braunstein, Phys. Rev. Lett. 87, 247901 (2001).

    Google Scholar 

  42. A. Ferraro, M. G. A. Paris, M. Bondani, et al., J. Opt. Soc. Am. B 21, 1241 (2004).

    Article  ADS  Google Scholar 

  43. S. Mancini, D. Vitali, and P. Tombesi, Phys. Rev. Lett. 90, 137901 (2003).

    Google Scholar 

  44. S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, Phys. Rev. A 68, 062317 (2003).

    Google Scholar 

  45. S. Pirandola, S. Mancini, and D. Vitali, Phys. Rev. A 71, 042326 (2005); S. Pirandola, S. Mancini, and D. Vitali, Phys. Rev. A 72, 059901 (2005).

  46. F. Verstraete, M. Popp, and J. I. Cirac, Phys. Rev. Lett. 92, 027901 (2004).

    Google Scholar 

  47. A. Serafini, G. Adesso, and F. Illuminati, Phys. Rev. A 71, 032349 (2005).

    Google Scholar 

  48. S. Pirandola, Int. J. Quantum Inform. 3, 239 (2005); S. Pirandola, D. Vitali, P. Tombesi, and S. Lloyd, quantph/0509119.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirandola, S., Mancini, S. Quantum teleportation with continuous variables: A survey. Laser Phys. 16, 1418–1438 (2006). https://doi.org/10.1134/S1054660X06100057

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06100057

PACS numbers

Navigation