Skip to main content
Log in

Extreme Atmospheric and Hydrological Phenomena in Russian Regions: Relationship with the Pacific Decadal Oscillation

  • ATMOSPHERIC AND HYDROSPHERE PHYSICS
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The regional features of the formation of extreme atmospheric and hydrological, climatic, and ecological regimes in connection with the manifestations of the Pacific Decadal Oscillation (PDO) against the background of the general warming of recent decades are estimated. In particular, the record Amur flood in 2013 and the Kamchatka “red tide” in 2020 were formed due to positive temperature anomalies in the western Pacific Ocean in the Northern Hemisphere, which corresponded to the negative PDO phase. Large-scale climatic variations, like the “climate shift” in the second half of the 1970s, are associated with PDO; their connection with the peculiarities of atmospheric blockings is noted. In particular, the frequency of summer atmospheric blockings, maximal over the European territory of Russia, is especially high during a negative PDO phase. The record-long atmospheric blocking period over the European Russia in summer 2010, with record heat and fires, fell precisely on a negative PDO phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge University Press, Cambridge/New York, 2013).

    Google Scholar 

  2. I. I. Mokhov, Izv., Atmos. Ocean. Phys. 56 (4), 325–344 (2020).

    Article  Google Scholar 

  3. V. G. Bondur, V. V. Zamshin, and O. I. Chvertkova, Dokl. Earth Sci. 497 (1), 255–261 (2021).

    Article  Google Scholar 

  4. I. I. Mokhov, A. V. Chernokulsky, and A. M. Osipov, Russ. Meteorol. Hydrol. 45 (11), 749–762 (2020).

    Article  Google Scholar 

  5. A. J. Miller, D. R. Cayan, T. P. Barnett, N. E. Craham, and J. M. Oberhuber, Oceanography 7, 21–26 (1994).

    Article  Google Scholar 

  6. M. Latif and T. P. Barnett, J. Clim. 9, 2407–2423 (1996).

    Article  Google Scholar 

  7. R. C. Wills, T. Schneider, J. M. Wallace, D. S. Battisti, and D. L. Hartmann, Geophys. Rev. Lett. 45, 2487–2496 (2018).

    Article  Google Scholar 

  8. I. I. Mokhov, Dokl. Earth Sci. 455 (2), 459–462 (2014).

    Article  Google Scholar 

  9. I. I. Mokhov, V. Ch. Khon, A. V. Timazhev, A. V. Chernokul’skii, and V. A. Semenov, in Extreme Flood Periods for Amur River Basin: Reasons, Predictions, Recommendations (Rosgidromet, Moscow, 2014), pp. 81–120 [in Russian].

    Google Scholar 

  10. T. Yu. Orlova, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, No. 1, 27–31 (2005).

    Google Scholar 

  11. R. C. Hooff and W. T. Peterson, Limnol. Oceanogr. 51 (6), 2607–2620 (2006).

    Article  Google Scholar 

  12. S. M. McKibben, W. Peterson, A. M. Wood, V. L. Trainer, M. Hunter, and A. E. White, Proc. Nat. Acad. Sci. 114 (2), 239–244 (2017).

    Article  Google Scholar 

  13. R. Corteґs-Altamirano, R. Alonso-Rodrıґguez, and D. A. Salas-de-Leoґn, PLoS ONE 14 (1), e020631 (2019). https://doi.org/10.1371/journal.pone.0210631

    Article  Google Scholar 

  14. V. G. Bondur, I. I. Mokhov, O. S. Voronova, and S. A. Sitnov, Dokl. Earth Sci. 492 (1), 370–376 (2020).

    Article  Google Scholar 

  15. I. I. Mokhov, V. G. Bondur, S. A. Sitnov, and O. S. Voronova, Dokl. Earth Sci. 495 (2), 921–924 (2020).

    Article  Google Scholar 

  16. I. I. Mokhov, M. G. Akperov, M. A. Prokofyeva, A. A. Timazhev, A. R. Lupo, and H. Le Treut, Dokl. Earth Sci. 449 (2), 430–434 (2013).

    Article  Google Scholar 

  17. A. R. Lupo, A. D. Jensen, I. I. Mokhov, A. Timazhev, T. Eichler, and B. Efe, Atmosphere 10 (2), 92 (2019). https://doi.org/10.3390/atmos10020092

    Article  Google Scholar 

  18. I. I. Mokhov, A. V. Eliseev, and D. V. Khvorost’yanov, Izv., Atmos. Ocean. Phys. 36 (6), 681–691 (2000).

    Google Scholar 

  19. I. I. Mokhov, D. V. Khvorostyanov, and A. V. Eliseev, Int. J. Climatol. 24, 401–414 (2004).

    Article  Google Scholar 

  20. S. Li, L. Wu, Y. Yang, T. Geng, W. Cai, B. Gan, Z. Chen, Z. Jing, G. Wang, and X. Ma Nat. Clim. Change 10, 30–34 (2020).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-17-00240. The features of the blocking conditions were analyzed under the financial support of the Ministry of Science and Higher Education of the Russian Federation, grant agreement no. 075-15-2020-776.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Mokhov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhov, I.I. Extreme Atmospheric and Hydrological Phenomena in Russian Regions: Relationship with the Pacific Decadal Oscillation. Dokl. Earth Sc. 500, 861–865 (2021). https://doi.org/10.1134/S1028334X21100123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X21100123

Keywords:

Navigation