Skip to main content
Log in

Structural Stability of Dispersions of Magnetic Nanoparticles in Aqueous Solutions of Polysorbate-80

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The structural features of aggregation in magnetic fluids based on solutions of the surfactant polysorbate-80 (tween-80) were investigated. Using small-angle X-ray and neutron scattering and dynamic light scattering the fractional distributions of magnetite and cobalt ferrite nanoparticles in a liquid carrier were obtained, for which a comparative analysis was carried out. In the case of neutron scattering, to analyze the contributions from different components of the solutions, a contrast variation based on mixtures of light and heavy water was additionally applied. As a result, it was shown that the studied systems have a more complex structure than classical magnetic fluids, when magnetic nanoparticles form “core-shell” complexes with surfactant molecules, and represent solutions of large associates (size of about 100 nm). Nevertheless, the dispersions show colloidal stability for a long (at least one year) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. U. Hafeli and M. Zborowski, J. Magn. Magn. Mater. 321, 1335 (2009).

    Article  Google Scholar 

  2. J. van der Zee, Z. Vujaskovi, M. Kondo, and T. Sugahara, Int. J. Hyperthermia 24, 111 (2008). https://doi.org/10.1080/02656730801895058

    Article  CAS  Google Scholar 

  3. L. Vekas, D. Bica, and M. V. Avdeev, China Particuol. 5, 43 (2007). https://doi.org/10.1016/j.cpart.2007.01.015

    Article  CAS  Google Scholar 

  4. M. V. Avdeev and V. L. Aksenov, Phys.—Usp. 53, 971 (2010). https://doi.org/10.3367/UFNe.0180.201010a.1009

    Article  CAS  Google Scholar 

  5. B. E. Kashevsky, V. E. Agabekov, S. B. Kashevsky, et al., Particuology 6, 322 (2008).

    Article  CAS  Google Scholar 

  6. A. G. Belous, E. D. Solovyova, S. O. Solopan, et al., Solid State Phenom. 230, 95 (2015). https://doi.org/10..4028/www.scientific.net/SSP.230.95

  7. C. Guibert, V. Dupuis, V. Peyre, and J. Fresnais, J. Phys. Chem. C 119 (3), 28148 (2015). https://doi.org/10.1021/acs.jpcc.5b07796

    Article  CAS  Google Scholar 

  8. A. V. Nagornyi, V. Socoliuc, V. I. Petrenko, et al., J. Magn. Magn. Mater. 501, 166445 (2020). https://doi.org/10.1016/j.jmmm.2020.166445

    Article  CAS  Google Scholar 

  9. A. V. Nagornyi, V. I. Petrenko, M. V. Avdeev, et al., J. Magn. Magn. Mater. 431, 16 (2017). https://doi.org/10.1016/j.jmmm.2016.10.018

    Article  CAS  Google Scholar 

  10. A. V. Nagornyi, V. I. Petrenko, M. V. Avdeev, et al., Rom. J. Phys. 61, 483 (2016). http://www.nipne.ro/rjp/2016_61_3-4/RomJPhys.61.p483.pdf.

    Google Scholar 

  11. V. Aksenov, M. Avdeev, M. Balasoiu, et al., Appl. Phys. A 74, 943 (2002). https://doi.org/10.1007/s003390201674

    Article  CAS  Google Scholar 

  12. M. Balasoiu, M. V. Avdeev, V. L. Aksenov, et al., J. Magn. Magn. Mater. 300, e225 (2006). https://doi.org/10.1016/j.jmmm.2005.10.085

    Article  CAS  Google Scholar 

  13. O. V. Yelenich, S. O. Solopan, V. V. Trachevskii, and A. G. Belous, Russ. J. Inorg. Chem. 58, 901 (2013). https://doi.org/10.1134/S0036023613080068

    Article  CAS  Google Scholar 

  14. V. N. Korneev, V. A. Shlektarev, A. V. Zabelin, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 6, 849 (2012). https://doi.org/10.1134/S1027451012100084

    Article  CAS  Google Scholar 

  15. A. P. Hammersley, “FIT2D V9.129. Reference Manual,” ESRF Internal Report: ESRF98HA01T. V 3.1. 1998.

  16. A. I. Kuklin, D. V. Soloviov, A. V. Rogachev, et al., J. Phys.: Conf. Ser. 291, 012013 (2011).

    Google Scholar 

  17. E. I. Litvinenko, A. A. Bogdzel, V. I. Bodnarchuk, et al., CEUR Workshop Proceedings (2019), Vol. 2507, p. 165. http://ceur-ws.org/Vol-2507/165-169-paper-28.pdf.

    Google Scholar 

  18. E. I. Litvinenko, A. A. Bogdzel, V. I. Bodnarchuk, et al., Instrum. Exp. Tech. 63, 339 (2020). https://doi.org/10.1134/S0020441220040077

    Article  Google Scholar 

  19. D. Franke, M. V. Petoukhov, P. V. Konarev, et al., J. Appl. Crystallogr. 50, 1212 (2017). https://doi.org/10.1107/S1600576717007786

    Article  CAS  Google Scholar 

  20. M. Kotlarchyk, R. B. Stephens, and J. S. Huang, J. Phys. Chem. 92, 1533 (1988). https://doi.org/10.1021/j100317a032

    Article  CAS  Google Scholar 

  21. A. V. Nagornyi, M. V. Avdeev, A. V. Elenich, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 12, 737 (2018). https://doi.org/10.1134/S102745101804033X

    Article  CAS  Google Scholar 

  22. T. Zheng, S. Bott, and Q. Huo, Appl. Mater. Interfaces 8, 21585 (2016). https://doi.org/10.1021/acsami.6b06903

    Article  CAS  Google Scholar 

  23. A. V. Nagornyi, Y. Y. Shlapa, M. V. Avdeev, et al., J. Mol. Liq. 312, 113430 (2020). https://doi.org/10.1016/j.molliq.2020.113430

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nagornyi.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagornyi, A.V., Avdeev, M.V., Ivankov, O.I. et al. Structural Stability of Dispersions of Magnetic Nanoparticles in Aqueous Solutions of Polysorbate-80. J. Surf. Investig. 15, 781–786 (2021). https://doi.org/10.1134/S1027451021040339

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021040339

Keywords:

Navigation