Skip to main content
Log in

T-10 Tokamak Hydrocarbon Films as Storage of Hydrogen and Hydrocarbon Isotopes

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of the study of the properties and structural features of amorphous hydrocarbon films CDx (x ~ 0.5) obtained in the plasma discharge of the T-10 tokamak are presented, which characterize these films as a hydrocarbon system with carbon sp3 + sp2 states (mainly with sp3 states). The films form a branched three-dimensional fractal carbon network with a fractal structure and a high specific surface. Such a CDx system facilitates accumulation and storage of both hydrogen isotopes and hydrocarbons in a stable state. Its desorption characteristics can be improved by the catalytic effect of iron impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Brzhezinskaya, E. A. Belenkov, V. A. Greshnyakov, et al., J. Alloys Compd. 792, 713 (2019). https://doi.org/10.1016/j.jallcom.2019.04.107

    Article  CAS  Google Scholar 

  2. H. Atsumi and K. Tauchi, J. Alloys Compd. 356–357, 705 (2003). https://doi.org/10.1016/S0925-8388(03)00290-1

    Article  CAS  Google Scholar 

  3. N. Yu. Svechnikov, V. G. Stankevich, B. N. Kolbasov, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11, 1208 (2017). https://doi.org/10.1134/S1027451017060349

    Article  CAS  Google Scholar 

  4. O. E. Aksyutin, A. G. Ishkov, K. V. Romanov, et al., Gazov. Prom-st. 1, 82 (2017).

    Google Scholar 

  5. N. Yu. Svechnikov, V. G. Stankevich, L. P. Sukhanov, et al., J. Nucl. Mater. 376, 152 (2008). https://doi.org/10.1016/j.jnucmat.2008.02.072

    Article  CAS  Google Scholar 

  6. S. Orimo, T. Matsushima, H. Fujii, et al., J. Appl. Phys. 90, 1545 (2001). https://doi.org/10.1063/1.1385362

    Article  CAS  Google Scholar 

  7. V. G. Stankevich, L. P. Sukhanov, N. Yu. Svechnikov, et al., Eur. Phys. J.: Appl. Phys. 80, 20301 (2017). https://doi.org/10.1051/epjap/2017170226

    Article  CAS  Google Scholar 

  8. N. Yu. Svechnikov, V. G. Stankevich, L. P. Sukhanov, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 9, 1221 (2015). https://doi.org/10.1134/S1027451015060397

    Article  CAS  Google Scholar 

  9. V. Philipps, Fusion Sci. Technol. 45, 237 (2004). https://doi.org/10.13182/FST04-A488

    Article  CAS  Google Scholar 

  10. J. Von Seggern, M. Rubel, P. Karduck, et al., Phys. Scr., 1999, 31 (1999). https://doi.org/10.1238/Physica.Topical.081a00031

    Article  Google Scholar 

  11. S. L. Molodtsov, S. I. Fedoseenko, D. V. Vyalikh, et al., Appl. Phys. A: Mater. Sci. Process. 94, 501 (2009). https://doi.org/10.1007/s00339-008-4916-1

    Article  CAS  Google Scholar 

  12. D. I. Kochubei, EXAFS Spectroscopy of Catalysts (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  13. K. Maruyama, W. Jacob, and J. Roth, J. Nucl. Mater. 264, 56 (1999).

    Article  CAS  Google Scholar 

  14. Y. Yin, R. E. Collins, and Q.-C. Zhang, J. Mater. Sci. 29, 5794 (1994).

    Article  CAS  Google Scholar 

  15. G. Cicala, P. Bruno, A. Dragone, et al., Thin Solid Films 482, 264 (2005). https://doi.org/10.1016/j.tsf.2004.11.156

    Article  CAS  Google Scholar 

  16. J. Biener, U. A. Schubert, A. Schenk, et al., J. Chem. Phys. 99, 3125 (1993).

    Article  CAS  Google Scholar 

  17. C. I. Smith, H. Miyaoka, T. Ichikawa, et al., J. Phys. Chem. C 113, 5409 (2009). https://doi.org/10.1021/jp809902r

    Article  CAS  Google Scholar 

  18. H. Miyaoka, T. Ichikawa, T. Fujii, et al., J. Alloys Compd. 507, 547 (2010). https://doi.org/10.1016/j.jallcom.2010.07.221

    Article  CAS  Google Scholar 

  19. Y. Zhang and D. Book, Int. J. Eng. Res. 37, 720 (2013). https://doi.org/10.1002/er.1903

    Article  CAS  Google Scholar 

  20. Y. Xia, Z. Yang, and Y. Zhu, J. Mater. Chem. A 1, 9365 (2013). https://doi.org/10.1039/C3TA10583K

    Article  CAS  Google Scholar 

  21. G. Federici, Ch. H. Skinner, J. N. Brooks, et al., Nucl. Fusion 41, 1967 (2001). https://doi.org/10.1088/0029-5515/41/12/218

    Article  Google Scholar 

  22. P. Franzen, R. Behrisch, C. Garcia-Rosales, et al., Nucl. Fusion 37, 1375 (1997). https://doi.org/10.1088/0029-5515/37/10/I05

    Article  CAS  Google Scholar 

  23. Y. Hirohata, J. Nucl. Mater. 337–339, 609 (2005). https://doi.org/10.1016/j.jnucmat.2004.10.078

    Article  CAS  Google Scholar 

  24. A. Schenk, B. Winter, J. Biener, et al., J. Appl. Phys. 77, 2462 (1995).

    Article  CAS  Google Scholar 

  25. U. Kürpick, G. Meister, and A. Goldmann, Appl. Phys. A: Mater. Sci. Process. 55, 529 (1992).

    Article  Google Scholar 

  26. J. Roth, R. Preuss, W. Bohnmeyer, et al., Nucl. Fusion 44, L21 (2004). https://doi.org/10.1088/0029-5515/44/11/L01

    Article  CAS  Google Scholar 

  27. R. Zacharia, H. Ulbricht, and T. Hertel, Phys. Rev. B 69, 155406 (2016). https://doi.org/10.1103/PhysRevB.69.155406

    Article  CAS  Google Scholar 

  28. M. Brzhezinskaya, N. Yu. Svechnikov, V. G. Stankevich, et al., Fullerenes, Nanotubes, Carbon Nanostruct. 28, 173 (2020). https://doi.org/10.1080/1536383X.2019.1686616

    Article  CAS  Google Scholar 

  29. P. J. Fallon, V. S. Veerasamy, C. A. Davis, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 48, 4777 (1993).

    Article  CAS  Google Scholar 

  30. S. C. Ray, W. F. Pong, and P. Papakonstantinou, Thin Solid Films 610, 42 (2016). https://doi.org/10.1016/j.tsf.2016.04.048

    Article  CAS  Google Scholar 

  31. D. Pacile and M. Papagno, A. Fraile Rodríguez, et al., Phys. Rev. Lett. 101, 066806 (2008). https://doi.org/10.1103/PhysRevLett.101.066806

    Article  CAS  Google Scholar 

  32. B. J. Schultz, Ch. J. Patridge, V. Lee, et al., Nat. Commun. 2, 372 (2011). https://doi.org/10.1038/ncomms1376

    Article  CAS  Google Scholar 

  33. W. Hua, Bin Gao, Shuhua Li, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 82, 155433 (2010). https://doi.org/10.1103/PhysRevB.82.155433

    Article  CAS  Google Scholar 

  34. M. Brzhezinskaya, A. Irzhak, D. Irzhak, et al., Phys. Status Solidi RRL 10, 639 (2016). https://doi.org/10.1002/pssr.201600122

    Article  CAS  Google Scholar 

  35. M. Brzhezinskaya, E. M. Baitinger, E. A. Belenkov, et al., Phys. Solid State 55, 850 (2013). https://doi.org/10.1134/S1063783413040057

    Article  CAS  Google Scholar 

  36. E. J. Mele and J. J. Ritsko, Phys. Rev. Lett. 43, 68 (1979).

    Article  CAS  Google Scholar 

  37. A. A. Eliseev, L. V. Yashina, N. I. Verbitskiy, et al., Carbon 50, 4021 (2012). https://doi.org/10.1016/j.carbon.2012.04.046

  38. J. Robertson, Philos. Mag. B 76, 335 (1997). https://doi.org/10.1080/0141863970824109

    Article  CAS  Google Scholar 

  39. N. Yu. Svechnikov, V. G. Stankevich, A. M. Lebedev, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 10, 23 (2016). https://doi.org/10.1134/S1027451016010183

    Article  CAS  Google Scholar 

  40. J. Stöhr, NEXAFS Spectroscopy, Springer Series in Surface Science (Springer, Heidelberg, 1996), Vol 25.

  41. A. Manceau and W. P. Gates, Clays Clay Miner. 45, 448 (1997).

    Article  CAS  Google Scholar 

  42. T. Yamamoto, X-Ray Spectrom. 37, 572 (2008). https://doi.org/10.1002/xrs.1103

    Article  CAS  Google Scholar 

  43. A. Manceau, B. Lanson, V. A. Drits, et al., Am. Mineral. 85, 133 (2000).

    Article  CAS  Google Scholar 

  44. M. Wilke, F. Farges, P.-E. Petit, et al., Am. Mineral. 86, 714 (2001). https://doi.org/10.2138/am-2001-5-612

    Article  CAS  Google Scholar 

  45. S. H. Choi, B. R. Wood, A. T. Bell, et al., J. Phys. Chem. B 108, 8970 (2004). https://doi.org/10.1021/jp040065e

    Article  CAS  Google Scholar 

  46. T. E. Westre, P. Kennepohl, J. G. DeWitt, et al., J. Am. Chem. Soc. 119, 6297 (1997).

    Article  CAS  Google Scholar 

  47. U. Jansson and E. Lewin, Thin Solid Films 536, 1 (2013). https://doi.org/10.1016/j.tsf.2013.02.019

    Article  CAS  Google Scholar 

  48. T. Jüstel, Coordination and Transition Metal Chemistry, Inorganic Chemistry II. www.fh-muenster.de/ciw/downloads/personal/juestel/juestel/Anorganische_Chemie_II-Koordinationschemie_englisch_.pdf.

  49. Fr. De Groot, G. Vank, and P. Glatzel, J. Phys.: Condens. Matter 21, 104207 (2009). https://doi.org/10.1088/0953-8984/21/10/104207

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank B.N. Kolbasov and L.N. Khimchenko (NRC Kurchatov Institute, Russia) for providing samples of CDx films. The authors are grateful to Helmholtz–Zentrum Berlin (Germany) for the allocation of synchrotron radiation beamtime.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Svechnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svechnikov, N.Y., Brzhezinskaya, M., Stankevich, V.G. et al. T-10 Tokamak Hydrocarbon Films as Storage of Hydrogen and Hydrocarbon Isotopes. J. Surf. Investig. 15, 100–109 (2021). https://doi.org/10.1134/S1027451021010328

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021010328

Keywords:

Navigation