Skip to main content
Log in

Molecular Characteristics of SUN5 in Banna Mini-Pig Inbred Line (BMI) and Its Expression Regulation in Testis

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

SUN5 (Sad1 and UNC84 domain-containing protein 5) is indeed a necessary structural protein located at the head-to-tail junction of sperm. It is primarily localized to the manchette, a microtubule-based structure in elongating spermatids that is involved in shaping and remodeling the sperm head during spermiogenesis. This study aims to analyze the expression pattern, sequence characteristics, and potential biological function of the SUN5 gene in Banna mi-pig inbred line (BMI). Adult BMI boar testes were analyzed using RNA-seq, and the complete coding sequence of SUN5 was obtained by RT-PCR; the sequence, structural characteristics, interacting proteins, as well as its KEGG and GO annotations were analyzed; the ceRNA regulatory network of SUN5 was constructed using RNA-seq data. RNA-seq of SUN5 analysis revealed an average expression level of 2003 and a TPM value of 49.8. Full-length CDS of SUN5 was 1152 bp long, encoding 383 amino acids. Compared to the swine (Sscrofa11.1) genome sequence, the SUN5 gene in BMI had an insertion of three bases GAA at 469–471 bp in the CDS region, which corresponded to glutamic acid. The amino acid sequence alignment analysis of multiple species revealed that the similarity between BMI and other species was greater than 78%, the results of the species phylogenetic tree analysis met the clustering criteria, indicating that the evolutionary relationships among the species were accurately represented. Additional analyses, such as PPI networks, KEGG, and GO, revealed that BMI SUN5 interacts with 32 proteins that are involved in a variety of functions, including vascular smooth muscle contraction, ribosome biogenesis, and more. The functional annotation indicated that SUN5 was involved in 8 GOs, comprising five cellular components, one molecular function, and two biological processes. 9 miRNAs were found to regulate the SUN5 gene through a targeted mode. This study aimed to investigate the expression and regulatory network of SUN5 in the testis of BMI, including its molecular structure characteristics. These findings provide a foundation for further research into the function of SUN5 in the spermatogenesis process of BMI, particularly its crucial role in the connection between sperm head and tail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Hao, S.L., Ni, F.D., and Yang, W.X., The dynamics and regulation of chromatin remodeling during spermiogenesis, Gene, 2019, vol. 706, pp. 201—210. https://doi.org/10.1016/j.gene.2019.05.027

    Article  CAS  PubMed  Google Scholar 

  2. Galletta, B.J., Ortega, J.M., Smith, S.L., et al., Sperm head-tail linkage requires restriction of pericentriolar material to the proximal centriole end, Dev. Cell, 2020, vol. 53, pp. 86—101. https://doi.org/10.1016/j.devcel.2020.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Y., Yang, L., Huang, L., et al., SUN5 interacting with nesprin3 plays an essential role in sperm head-to-tail linkage: research on sun5 gene knockout mice, Front. Cell Dev. Biol., 2021, vol. 9, p. 684826. https://doi.org/10.3389/fcell.2021.684826

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sha, Y.W., Xu, X., Ji, Z.Y., et al., Genetic contribution of SUN5 mutations to acephalic spermatozoa in Fujian China, Gene, 2018, vol. 647, pp. 221—225. https://doi.org/10.1016/j.gene.2018.01.035

    Article  CAS  PubMed  Google Scholar 

  5. Chemes, H.E., Puigdomenech, E.T., Carizza, C., et al., Acephalic spermatozoa and abnormal development of the head-neck attachment: a human syndrome of genetic origin, Hum. Reprod., 1999, vol. 14, pp. 1811—1818. https://doi.org/10.1093/humrep/14.7.1811

    Article  CAS  PubMed  Google Scholar 

  6. Elkhatib, R.A., Paci, M., Longepied, G., et al., Homozygous deletion of SUN5 in three men with decapitated spermatozoa, Hum. Mol. Genet., 2017, vol. 26, pp. 3167—3171. https://doi.org/10.1093/hmg/ddx200

    Article  CAS  PubMed  Google Scholar 

  7. Malone, C.J., Fixsen, W.D., Horvitz, H.R., et al., UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development, Development, 1999, vol. 126, pp. 3171—3181. https://doi.org/10.1242/dev.126.14.3171

    Article  CAS  PubMed  Google Scholar 

  8. Crisp, M., Liu, Q., Roux, K., et al., Coupling of the nucleus and cytoplasm: role of the LINC complex, J. Cell. Biol., 2006, vol. 172, pp. 41—53. https://doi.org/10.1083/jcb.200509124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shao, X., Tarnasky, H.A., Lee, J.P., et al., Spag4, a novel sperm protein, binds outer dense-fiber protein Odf1 and localizes to microtubules of manchette and axoneme, Dev. Biol., 1999, vol. 211, pp. 109—123. https://doi.org/10.1006/dbio.1999.9297

    Article  CAS  PubMed  Google Scholar 

  10. Cain, N.E., Jahed, Z., Schoenhofen, A., et al., Conserved SUN-KASH interfaces mediate LINC complex-dependent nuclear movement and positioning, Curr. Biol., 2018, vol. 28, pp. 3086—3097. https://doi.org/10.1016/j.cub.2018.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Göb, E., Schmitt, J., Benavente, R., et al., Mammalian sperm head formation involves different polarization of two novel LINC complexes, PLoS One, 2010, vol. 5, p. e12072. https://doi.org/10.1371/journal.pone.0012072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frohnert, C., Schweizer, S., and Hoyer-Fender, S., SPAG4L/SPAG4L-2 are testis-specific SUN domain proteins restricted to the apical nuclear envelope of round spermatids facing the acrosome, Mol. Hum. Reprod., 2011, vol. 17, pp. 207—218. https://doi.org/10.1093/molehr/gaq099

    Article  CAS  PubMed  Google Scholar 

  13. Chen, S., Zhou, Y., Chen, Y., et al., Fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics, 2018, vol. 34, pp. i884—i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Langmead, B. and Salzberg, S.L., Fast gapped-read alignment with Bowtie 2, Nat. Methods, 2012, vol. 9, pp. 357—359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weeks, NT., and Luecke, G.R., Optimization of SAMtools sorting using OpenMP tasks, Cluster Comput., 2017, vol. 20, pp. 1869—1880. https://doi.org/10.1007/s10586-017-0874-8

    Article  Google Scholar 

  16. Dobin, A., Davis, C.A., Schlesinger, F., et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics, 2013, vol. 29, pp. 15—21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  17. Liao, Y., Smyth, G.K., and Shi, W., FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, 2014, vol. 30, pp. 923—930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  18. Patro, R., Duggal, G., Love, M.I., et al., Salmon provides fast and bias-aware quantification of transcript expression, Nat. Methods, 2017, vol. 14, pp. 417—419. https://doi.org/10.1038/nmeth.4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shang, Y., Yan, J., Tang, W., et al., Mechanistic insights into acephalic spermatozoa syndrome-associated mutations in the human SUN5 gene, J. Biol. Chem., 2018, vol. 293, pp. 2395—2407. https://doi.org/10.1074/jbc.RA117.000861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu, F., Wang, F., Yang, X., et al., Biallelic SUN5 mutations cause autosomal-recessive acephalic spermatozoa syndrome, Am. J. Hum. Genet., 2016, vol. 99, pp. 942—949. https://doi.org/10.1016/j.ajhg.2016.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu, F., Liu, C., Wang, F., et al., Mutations in PMFBP1 cause acephalic spermatozoa syndrome, Am. J. Hum. Genet., 2018, vol. 103, pp. 188—199. https://doi.org/10.1016/j.ajhg.2018.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fridkin, A., Penkner, A., Jantsch, V., et al., SUN-domain and KASH-domain proteins during development, meiosis and disease, Cell Mol. Life Sci., 2009, vol. 66, pp. 1518—1533. https://doi.org/10.1007/s00018-008-8713-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Q., Du, X., Cai, Z., et al., Characterization of the structures involved in localization of the SUN proteins to the nuclear envelope and the centrosome, DNA Cell Biol., 2006, vol. 25, pp. 554—562. https://doi.org/10.1089/dna.2006.25.554

    Article  CAS  PubMed  Google Scholar 

  24. Starr, D.A. and Han, M., Role of ANC-1 in tethering nuclei to the actin cytoskeleton, Science, 2002, vol. 298, pp. 406—409. https://doi.org/10.1126/science.1075119

    Article  CAS  PubMed  Google Scholar 

  25. Stewart-Hutchinson, P.J., Hale, C.M., Wirtz, D., et al., Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness, Exp. Cell Res., 2008, vol. 314, pp. 1892—1905. https://doi.org/10.1016/j.yexcr.2008.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tapley, E.C. and Starr, D.A., Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope, Curr. Opin. Cell Biol., 2013, vol. 25, pp. 57—62. https://doi.org/10.1016/j.ceb.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  27. Shang, Y., Zhu, F., Wang, L., et al., Essential role for SUN5 in anchoring sperm head to the tail, eLife, 2017, vol. 6, p. e28199. https://doi.org/10.7554/eLife.28199

    Article  PubMed  PubMed Central  Google Scholar 

  28. Okada, T., Akada, M., Fujita, T., et al., A novel cancer testis antigen that is frequently expressed in pancreatic, lung, and endometrial cancers, Clin. Cancer Res., 2006, vol. 12, pp. 191—197. https://doi.org/10.1158/1078-0432.CCR-05-1206

    Article  CAS  PubMed  Google Scholar 

  29. Pausch, H., Venhoranta, H., Wurmser, C., et al., A frameshift mutation in ARMC3 is associated with a tail stump sperm defect in Swedish Red (Bos taurus) cattle, BMC Genet., 2016, vol. 17, p. 49. https://doi.org/10.1186/s12863-016-0356-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lei, Y., Zhang, X., Xu, Q., et al., Autophagic elimination of ribosomes during spermiogenesis provides energy for flagellar motility, Dev. Cell, 2021, vol. 56, pp. 2313—2328. https://doi.org/10.1016/j.devcel.2021.07.015

    Article  CAS  PubMed  Google Scholar 

  31. Sun, X.H., Zhu, Y.Y., Wang, L., et al., The Catsper channel and its roles in male fertility: a systematic review, Reprod. Biol. Endocrinol., 2017, vol. 15, p. 65. https://doi.org/10.1186/s12958-017-0281-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brown, S.G., Publicover, S.J., Barratt, C.L.R., et al., Human sperm ion channel (dys) function: implications for fertilization, Hum. Reprod. Update, 2019, vol. 25, pp. 758—776. https://doi.org/10.1093/humupd/dmz032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chung, J.J., Navarro, B., Krapivinsky, G., et al., A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa, Nat. Commun., 2011, vol. 2, p. 153. https://doi.org/10.1038/ncomms1153

    Article  CAS  PubMed  Google Scholar 

  34. Wilczynska, A. and Bushell, M., The complexity of miRNA-mediated repression, Cell Death Differ., 2015, vol. 22, pp. 22—33. https://doi.org/10.1038/cdd.2014.112

    Article  CAS  PubMed  Google Scholar 

  35. Fischer, J., Koch, L., Emmerling, C., et al., Inactivation of the Fto gene protects from obesity, Nature, 2009, vol. 458, pp. 894—898. https://doi.org/10.1038/nature07848

    Article  CAS  PubMed  Google Scholar 

  36. Bai, Y., Huang, J.M., Liu, G., et al., A comprehensive microRNA expression profile of the backfat tissue from castrated and intact full-sib pair male pigs, BMC Genomics, 2014, vol. 15, p. 47. https://doi.org/10.1186/1471-2164-15-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, J., Cho, I.S., Hong, J.S., et al., Identification and characterization of new microRNAs from pig, Mamm. Genome, 2008, vol. 19, pp. 570—580. https://doi.org/10.1007/s00335-008-9111-3

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, W., Zhong, L., Wang, J., et al., Distinct microRNA expression signatures of porcine induced pluripotent stem cells under mouse and human esc culture conditions, PLoS One, 2016, vol. 11, p. e0158655. https://doi.org/10.1371/journal.pone.0158655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Foekens, J.A., Sieuwerts, A.M., Smid, M., et al., Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 13021—13026. https://doi.org/10.1073/pnas.0803304105

    Article  PubMed  PubMed Central  Google Scholar 

  40. Crosby, M.E., Kulshreshtha, R., Ivan, M., et al., MicroRNA regulation of DNA repair gene expression in hypoxic stress, Cancer Res., 2009, vol. 69, pp. 1221—1229. https://doi.org/10.1158/0008-5472.CAN-08-2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, B., Qiangba, Y., Shang, P., et al., A comprehensive microRNA expression profile related to hypoxia adaptation in the Tibetan pig, PLoS One, 2015, vol. 10, p. e0143260. https://doi.org/10.1371/journal.pone.0143260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zuo, J., Wu, F., Liu, Y., et al., MicroRNA transcriptome profile analysis in porcine muscle and the effect of mir-143 on the MYH7 gene and protein, PLoS One, 2015, vol. 10, p. e0124873. https://doi.org/10.1371/journal.pone.0124873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Du, X., Zhang, L., Li, X., et al., TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis, Cell. Death. Dis., 2016, vol. 7, p. e2476. https://doi.org/10.1038/cddis.2016.379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang, T., Huang, X., Chen, W., et al., MicroRNA responses associated with Salmonella enterica serovar typhimurium challenge in peripheral blood: effects of miR-146a and IFN-γ in regulation of fecal bacteria shedding counts in pig, BMC Vet. Res., 2019, vol. 15, р. 195. https://doi.org/10.1186/s12917-019-1951-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundationof China (no. 32060733), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (no. 2022L570), 2023 Lyuliang Development Zone’s Plan to Introduce High-Level Scientific and Technological Talents (no. 2023RC26) Doctoral Fund of Lyuliang University.

Author information

Authors and Affiliations

Authors

Contributions

X. Zhang and H.L Huo contributed equally to this work.

Corresponding author

Correspondence to J. L. Huo.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The animal experiments conducted in this study were approved by the Research Ethics Committee of Yunnan Agricultural University (Approval no. YNAUREC2020224) and were carried out in accordance with the guidelines for the care and use of laboratory animals established by the National Research Council (2017).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Huo, H.L., Liu, Z.P. et al. Molecular Characteristics of SUN5 in Banna Mini-Pig Inbred Line (BMI) and Its Expression Regulation in Testis. Russ J Genet 59, 1345–1357 (2023). https://doi.org/10.1134/S1022795423120153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423120153

Keywords:

Navigation