Skip to main content
Log in

Comparative Analysis of the HAP2/GCS1, GEX2 Gene Expression in Maize Lines of Saratov Selection

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The haploid induction phenomenon has scientific and practical aspects for development of effective haploid-inducing maize line and creation of diploid homozygous lines. The article discusses the relationship between the maize haploid induction and the disturbance of gamete interactions, in particular, for GEX2-HAP2/GCS1-mediated adhesion and fusion of gamete membranes in Zarodyshevyi Marker Saratovskii Purpurnyi (ZMSP) maize line. Using real-time RT-PCR, it was found that the GEX2 and HAP2/GCS1 genes are expressed not only in sperm but also in ovules; however, the maize haploid-inducing ability does not correlate with their expression. It was shown that the ZMSP haploid-inducing line has 27 SNPs, one 9-bp insertion, and one 2-bp polymorphism in the GEX2 gene and the corresponding ten amino acid substitutions with two insertions in the GEX2 protein in comparison with the B73 reference line. These substitutions, possibly, affect the protein conformation and the interaction of gamete membranes. It was found that HAP2/GCS1, a more evolutionarily conserved protein for gamete membrane fusion in maize, has only one amino acid substitution in ZMSP in comparison with B73 and Korichnevyi Marker maize lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Navashin, S.G., Izbrannye trudy (Selected Works), Moscow: Akad. Nauk SSSR, 1951, vol. 1.

  2. Dresselhaus, T. and Snell, W.J., Fertilization: a sticky sperm protein in plants, Curr. Biol., 2014, vol. 24, no. 4, pp. R164—R166. https://doi.org/10.1016/j.cub.2013.12.044

    Article  CAS  PubMed  Google Scholar 

  3. Coe, E.H., A line of maize with high haploid frequency, Am. Nat., 1959, vol. 93, no. 873, pp. 381—382. https://doi.org/10.1086/282098

    Article  Google Scholar 

  4. Chase, S.S., Monoploid frequencies in a commercial double cross hybrid maize, and in its component single cross hybrids and inbred lines, Genetics, 1949, vol. 34, no. 3, pp. 328—332. https://doi.org/10.1093/genetics/34.3.328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tyrnov, V.S. and Zavalishina, A.N., High-frequency induction of matroclinal haploids in maize, Dokl. Akad. Nauk SSSR, 1984, vol. 276, pp. 735—738.

    Google Scholar 

  6. Shatskaya, O.A., Zabirova, E.R., Shcherbak, V.S., and Chumak, M.V., Mass induction of maternal haploids in corn, Maize Genet. Coop. Newslett., 1994, vol. 68, p. 51.

    Google Scholar 

  7. Bylich, V.G. and Chalyk, S.T., Existence of pollen grains with a pair of morphologically different sperm nuclei as a possible cause of the haploid-inducing capacity in ZMS line, Maize Genet. Coop. Newslett., 1996, vol. 70, p. 33.

    Google Scholar 

  8. Chalyk, S., Baumann, A., Daniel, G., and Eder, J., Aneuploidy as a possible cause of haploid-induction in maize, Maize Genet. Coop. Newslett., 2003, vol. 77, p. 29.

    Google Scholar 

  9. Hu, H.L., Schrag, T.A., Peis, R., et al., The genetic basis of haploid induction in maize identified with a novel genome-wide association method, Genetics, 2016, vol. 202, no. 4, pp. 1267—1276. https://doi.org/10.1534/genetics.115.184234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chumakov, M.I. and Mazilov, S.I., Genetic control of maize gynogenesis, Russ. J. Genet., 2022, vol. 58, no. 4, pp. 388—397. https://doi.org/10.1134/S1022795422040044

    Article  Google Scholar 

  11. Enaleeva, N.Kh., Tyrnov, V.S., Selivanova, L.P., and Zavalishina, A.N., Single fertilization and the problem of haploidy induction in maize, Dokl. Biol. Sci., 1997, vol. 353, pp. 405—407.

    CAS  Google Scholar 

  12. Gutorova, O.V., Study of the female gametophyte of the haploid-inducing maize line ZMS-P, Byull. Bot. Sada Saratov. Gos. Univ., 2006, no. 5, pp. 304—307.

  13. Kolesova, A.Y. and Gutorova, O.V., Cytoembriologic study of haploid-inducing maize line ZMS-8, Byull. Bot. Sada Saratov. Gos. Univ., 2008, no. 7, pp. 202—205.

  14. Tyrnov, V.S. and Enaleeva, N.Kh., Autonomous development of the embryo and endosperm in maize, Dokl. Acad. Nauk SSSR, 1983, vol. 272, no. 3, pp. 722—725.

    Google Scholar 

  15. Enaleeva, N.Kh. and Tyrnov, V.S., Cytological investigation of apomixis in AT-1 plants of corn, Maize Genet. Coop. Newslett., 1997, vol. 71, pp. 74—75.

    Google Scholar 

  16. Enaleeva, N.Kh., Ot’kalo, O.V., and Tyrnov, V.S., Phenotypic expression of the ig mutation in megagametophyte of the maize line embryonic marker, Russ. J. Genet., 1998, vol. 34, no. 2. pp. 193—198.

    CAS  Google Scholar 

  17. Kelliher, T., Starr, D., Richbourg, L., et al., MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction, Nature, 2017, vol. 542, no. 7639, pp. 105—109. https://doi.org/10.1038/nature20827

    Article  CAS  PubMed  Google Scholar 

  18. Gilles, L.M. and Khaled, A., Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize, EMBO J., 2017, vol. 36, no. 6, pp. 707—717. https://doi.org/10.15252/embj.201796603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, C., Li, X., Meng, D., Zhong, Y., et al., A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize, Mol. Plant, 2017, vol. 10, no. 3, pp. 520—522. https://doi.org/10.1016/j.molp.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  20. Chumakov, M.I., Matroclinic haploidy and gamete interaction in maize, Russ. J. Genet., 2018, vol. 54, no. 10, pp. 1137—1141. https://doi.org/10.1134/S1022795418100058

    Article  CAS  Google Scholar 

  21. Mori, H., Kuroiwa, T., Kranz, E., and Scholten, S., GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization, Nat. Cell Biol., 2006, vol. 8, pp. 64—71. https://doi.org/10.1038/ncb1345

    Article  CAS  PubMed  Google Scholar 

  22. Besser, V.K., Frank, A.C., Johnson, M.A., and Preuss, D., Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization, Development, 2006, vol. 133, no. 23, pp. 4761—4769. https://doi.org/10.1242/dev.02683

    Article  CAS  Google Scholar 

  23. Mori, T., Igawa, T., Tamiya, G., et al., Gamete attachment requires GEX2 for successful fertilization in Arabidopsis, Curr. Biol., 2014, vol. 24, no. 2, pp. 170—175. https://doi.org/10.1016/j.cub.2013.11.030

    Article  CAS  PubMed  Google Scholar 

  24. Wong, J.L., Leydon, A.R., and Johnson, M.A., HAP2(GCS1)-dependent gamete fusion requires a positively charged carboxy-terminal domain, PLoS Genet., 2010, vol. 6, no. 3. https://doi.org/10.1371/journal.pgen.1000882

  25. Volokhina, I.V., Moiseeva, E.M., Gusev, Y.S., et al., Analysis of the gamete-fusion genes in the haploid-inducing ZMS-P maize line, Russ. J. Dev. Biol., 2017, vol. 48, no. 2, pp. 117—121. https://doi.org/10.1134/S1062360417020096

    Article  Google Scholar 

  26. Hoopes, G.M., Hamilton, J.P., Wood, J.C., et al., An updated gene atlas for maize reveals organ-specific and stress-induced genes, Plant J., 2019, vol. 97, no. 6, pp. 1154—1167. https://doi.org/10.1111/tpj.14184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stelpflug, S.C., Sekhon, R.S., Vaillancourt, B., et al., An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development, Plant Genome, 2016, vol. 9, no. 1. https://doi.org/10.3835/plantgenome2015.04.0025

  28. Engel, M., Holmes-Davis, R., and McCormick, S., Green sperm: identification of male gamete promoters in Arabidopsis, Plant Physiol., 2005, vol. 138, pp. 2124—2133. https://doi.org/10.1104/pp.104.054213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ravi, M. and Chan, S.W.L., Haploid plants produced by centromere-mediated genome elimination, Nature, 2010, vol. 464, no. 7288, pp. 615—618.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Z., Qiu, F., Liu, Y., et al., Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.), Plant Cell Rep., 2008, vol. 27, no. 12, pp. 1851—1860. https://doi.org/10.1007/s00299-008-0601-2

    Article  CAS  PubMed  Google Scholar 

  31. Qiu, F., Liang, Y., Li, Y., et al., Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize, Curr. Plant Biol., 2014, vol. 1, pp. 83—90. https://doi.org/10.1016/j.cpb.2014.04.001

    Article  Google Scholar 

  32. Kelliher, T., Starr, D., Wang, W., et al., Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize, Front. Plant Sci., 2016, vol. 7, p. 414. https://doi.org/10.3389/fpls.2016.00414

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xu, X., Li, L., Dong, X., et al., Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize, J. Exp. Bot., 2013, vol. 64, no. 4, pp. 1083—1096. https://doi.org/10.1093/jxb/ers393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takahashi, T., Mori, T., Ueda, K., et al., The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants, Development, 2018, vol. 145, no. 23. https://doi.org/10.1242/dev.170076

  35. Cyprys, P., Lindemeier, M., and Sprunck, S., Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins, Nat. Plants, 2019, vol. 5, pp. 253—257. https://doi.org/10.1038/s41477-019-0382-3

    Article  CAS  PubMed  Google Scholar 

  36. Zhong, Y., Liu, C., Qi, X., et al., Mutation of ZmDMP enhances haploid induction in maize, Nat. Plants, 2019, vol. 5, pp. 575—580. https://doi.org/10.1038/s41477-019-0443-7

    Article  PubMed  Google Scholar 

  37. Conner, J.A., Mookkan, M., Huo, H., et al., A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 36, pp. 11205—11210. https://doi.org/10.1073/pnas.1505856112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Conner, J.A., Podio, M., and Ozias-Akins, P., Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes, Plant Reprod., 2017, vol. 30, pp. 41—52.

    Article  CAS  PubMed  Google Scholar 

  39. Zavalishina, A.N. and Tyrnov, V.S., Induction of matroclinal haploidy in maize in vivo, Reproductive Biology and Plant Breeding, (Proc. XIII EUCARPiA Congr.), 1992, pp. 221—222.

  40. Gutorova, O.V., Apanasova, N.V., and Yudakova, O.I., Creation of genetically marked maize lines with inherited and induced types of parthenogenesis, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2016, vol. 18, no. 2-2, pp. 341—344.

  41. Chase, S.S., Monoploids and monoploid-derivatives of maize (Zea mays L.), Bot. Rev., 1969, vol. 35, no. 2, pp. 117—168.

    Article  Google Scholar 

  42. Bijli, K.M., Singh, B.P., Sridhara, S., and Arora, N., Isolation of total RNA from pollens, Prep. Biochem. Biotechnol., 2001, vol. 31, pp. 155—162. https://doi.org/10.1081/PB-100103381

    Article  CAS  PubMed  Google Scholar 

  43. Manoli, A., Sturaro, A., Trevisan, S., et al., Evaluation of candidate reference genes for qPCR in maize, J. Plant Physiol., 2012, vol. 169, no. 8, pp. 807—815. https://doi.org/10.1016/j.jplph.2012.01.019

    Article  CAS  PubMed  Google Scholar 

  44. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method, Methods, 2001, vol. 25, no. 4, pp. 402—408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  45. Weaver, S., Dube, S., Mir, A., et al., Taking qPCR to a higher level: analysis of cnv reveals the power of high throughput qPCR to enhance quantitative resolution, Methods, 2010, vol. 50, no. 4, pp. 271—276. https://doi.org/10.1016/j.ymeth.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  46. Alandete-Saez, M., Ron, M., and Mccormick, S., GEX3 expressed in the male gametophyte and in the egg cell of Arabidopsis is essential for micropylar pollen tube guidance and plays a role during early embryogenesis, Mol. Plant, 2008, vol. 1, no. 4, pp. 586—598. https://doi.org/10.1093/mp/ssn015

    Article  CAS  PubMed  Google Scholar 

  47. Borges, F., Gomes, G., Gardner, R., et al., Comparative transcriptomics of Arabidopsis sperm cells, Plant Physiol., 2008, vol. 148, no. 2, pp. 1168—1181. https://doi.org/10.1104/pp.108.125229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Valansi, C., Moi, D., Leikina, E., et al., Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens, J. Cell Biol., 2017, vol. 216, pp. 571—581. https://doi.org/10.1083/jcb.201610093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fedry, J., Forcina, J., Legrand, P., et al., Evolutionary diversification of the HAP2 membrane insertion motifs to drive gamete fusion across eukaryotes, PLoS Biol., 2018, vol. 16, no. 8. e2006357. https://doi.org/10.1371/journal.pbio.2006357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to O.I. Yudakova for reading the manuscript and valuable comments, V.V. Fadeev for help in preparation of the manuscript, and the reviewer for useful comments.

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 20-016-00020a and 20-316-80020/20mol-e), a grant from the President of the Russian Federation (no. MK-4527.2022.1.4, Ministry of Education and Science), and the Basic Research Program of the State Academies of Sciences for 2021–2023 (no. 121031700141-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Chumakov.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseeva, E.M., Gusev, Y.S., Gutorova, O.V. et al. Comparative Analysis of the HAP2/GCS1, GEX2 Gene Expression in Maize Lines of Saratov Selection. Russ J Genet 59, 281–288 (2023). https://doi.org/10.1134/S1022795423030092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423030092

Keywords:

Navigation