Skip to main content
Log in

Pleiotropy of Copy Number Variation in Human Genome

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A brief history of the development of ideas about pleiotropy, its types, and the overall prevalence of pleiotropic loci in the human genome, as well as pleiotropic variants and genes within the same group of pathologies (disorders of psychomotor development) and between different diseases are discussed. Data on the association of the birth of a child with intellectual disability in a woman with a history of miscarriage are presented. The involvement of the same copy number variations (CNVs) in disorders of prenatal and postnatal development has been shown. The hypothesis is proposed that these CNVs are pleiotropic and manifested by one pathology or another, depending on additional modifying factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Stearns, F.W., One hundred years of pleiotropy: a retrospective, Genetics, 2010, vol. 186, no. 3, pp. 767—773. https://doi.org/10.1534/genetics.110.122549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McKusick, V.A., Pleiotropism, Am. J. Hum. Genet., 1976, vol. 28, no. 3, p. 301.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kucher, A.N., Babushkina, N.P., Buikin, S.V., and Puzyrev, V.P., Pleiotropic effects of multifactorial di-sease susceptibility genes, Mol. Med., 2013, vol. 2, pp. 13—23.

    Google Scholar 

  4. Tyler, A.L., Asselbergs, F.W., Williams, S.M., and Moore, J.H., Shadows of complexity: what biological networks reveal about epistasis and pleiotropy, BioEssays, 2009, vol. 31, no. 2, pp. 220—227. https://doi.org/10.1002/bies.200800022

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fisher, R.A., The Genetical Theory of Natural Selection, Oxford: The Clarendon Press, 1930.

    Book  Google Scholar 

  6. Mayr, E., Animal Species and Evolution, Cambridge, MA: Belknap, 1963.

    Book  Google Scholar 

  7. Wright, S., Genetic and Biometric Foundations, Chicago: Univ. Chicago Press, 1968.

    Google Scholar 

  8. Welch, J.J. and Waxman, D., Modularity and the cost of complexity, Evolution, 2003, vol. 57, pp. 1723—1734. https://doi.org/10.1111/j.0014-3820.2003.tb00581.x

    Article  PubMed  Google Scholar 

  9. Li, R.H., Tsaih, S.W., Shockley, K., et al., Structural model analysis of multiple quantitative traits, PLoS Genet., 2006, vol. 2, pp. 1046—1057. https://doi.org/10.1371/journal.pgen.0020114

    Article  CAS  Google Scholar 

  10. Wagner, G.P., Kenney-Hunt, J.P., Pavlicev, M., et al., Pleiotropic scaling of gene effects and the ‘cost of complexity,’ Nature, 2008, vol. 452, pp. 470—472. https://doi.org/10.1038/nature06756

    Article  CAS  PubMed  Google Scholar 

  11. Su, Z., Zeng, Y., and Gu, X., A preliminary analysis of gene pleiotropy estimated from protein sequences, J. Exp. Zool., 2009, vol. 312B, pp. 1—10. https://doi.org/10.1002/jez.b.21315

    Article  CAS  Google Scholar 

  12. Maclean, R.C., Bell, G., and Rainey, P.B., The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 8072—8077. https://doi.org/10.1073/pnas.0307195101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Knight, C.G., Zitzmann, N., Prabhakar, S., et al., Unraveling adaptive evolution: how a single point mutation affects the protein coregulation network, Nat. Genet., 2006, vol. 200638, pp. 1015—1022. https://doi.org/10.1038/ng1867

    Article  CAS  Google Scholar 

  14. Paaby, A.B. and Rockman, M.V., The many faces of pleiotropy, Trends Genet., 2013, vol. 29, no. 2, pp. 66—73. https://doi.org/10.1016/j.tig.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  15. Williams, G.C., Pleiotropy, natural selection, and the evolution of senescence, Evolution, 1957, vol. 11, pp. 398—411.

    Article  Google Scholar 

  16. Albecker, M.A., Wilkins, L.G., Krueger-Hadfield, S.A., et al., Does a complex life cycle affect adaptation to environmental change? Genome-informed insights for characterizing selection across complex life cycle, Proc. Biol. Sci., 2021, vol. 288, p. 20212122. https://doi.org/10.1098/rspb.2021.2122

  17. Geiler-Samerotte, K.A., Li, S., Lazaris, C., et al., Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping, PLoS Biol., 2020, vol. 18(8) p. e3000836. https://doi.org/10.1371/journal.pbio.3000836

  18. Lee, P.H., Feng, Y.C.A., and Smoller, J.W., Pleiotropy and cross-disorder genetics among psychiatric disorders, Biol. Psychiatry, 2021, vol. 89, no. 1, pp. 20—31. https://doi.org/10.1016/j.biopsych.2020.09.026

    Article  CAS  PubMed  Google Scholar 

  19. Raj, B. and Blencowe, B.J., Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles, Neuron, 2015, vol. 87, no. 1, pp. 14—27. https://doi.org/10.1016/j.neuron.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  20. Lee, P.H., Anttila, V., Won, H., et al., Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders, Cell, 2019, vol. 179, no. 7, pp. 1469—1482. https://doi.org/10.1016/j.cell.2019.11.020

    Article  CAS  Google Scholar 

  21. Krijger, P.H.L. and De Laat, W., Regulation of disease-associated gene expression in the 3D genome, Nat. Rev. Mol. Cell Biol., 2016, vol. 17, no. 12, pp. 771—782. https://doi.org/10.1038/nrm.2016.138

    Article  CAS  PubMed  Google Scholar 

  22. Voight, B.F., Peloso, G.M., Orho-Melander, M., et al., Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study, Lancet, 2012, vol. 380, no. 9841, pp. 572—580. https://doi.org/10.1016/S0140-6736(12)60312-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Watanabe, K., Stringer, S., Frei, O., et al., A global overview of pleiotropy and genetic architecture in complex traits, Nat. Genet., 2019, vol. 51, no. 9, pp. 1339—1348. https://doi.org/10.1038/s41588-019-0481-0

    Article  CAS  PubMed  Google Scholar 

  24. Shikov, A.E., Skitchenko, R.K., Predeus, A.V., and Barbitoff, Y.A., Phenome-wide functional dissection of pleiotropic effects highlights key molecular pathways for human complex traits, Sci. Rep., 2020, vol. 10, p. 1037. https://doi.org/10.1038/s41598-020-58040-4

  25. Novo, I., López-Cortegano, E., and Caballero, A., Highly pleiotropic variants of human traits are enriched in genomic regions with strong background selection, Hum. Genet., 2021, vol. 140, no. 9, pp. 1343—1351. https://doi.org/10.1007/s00439-021-02308-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kacser, H. and Burns, J.A., The molecular basis of dominance, Genetics, 1981, vol. 97, nos. 3—4, pp. 639—666. https://doi.org/10.1093/genetics/97.3-4.639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cross-Disorder Group of the Psychiatric Genomics Consortium, Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis, Lancet, 2013, vol. 381, no. 9875, pp. 1371—1379. https://doi.org/10.1016/S0140-6736(12)62129-1

    Article  CAS  PubMed Central  Google Scholar 

  28. Frei, O., Holland, D., Smeland, O.B., et al., Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation, Nat. Commun., 2019, vol. 10, p. 2417. https://doi.org/10.1038/s41467-019-10310-0

  29. Network and Pathway Analysis Subgroup of the Psychiatric Genomics Consortium, Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways, Nat. Neurosci., 2015, vol. 18, no. 2, рр. 199–209. https://doi.org/10.1038/nn.3922

  30. Liu, Y., Bhowmick, T., Liu, Y., et al., Structural basis for Draxin-Modulated Axon guidance and fasciculation by Netrin-1 through DCC, Neuron, 2018, vol. 97, no. 6, pp. 1261—1267. https://doi.org/10.1016/j.neuron.2018.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vosberg, D.E., Zhang, Y., Menegaux, A., et al., Mesocorticolimbic connectivity and volumetric alterations in DCC mutation carriers, J. Neurosci., 2018, vol. 38, no. 20, pp. 4655—4665. https://doi.org/10.1523/JNEUROSCI.3251-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Donovan, M.C. and Owen, M.J., The implications of the shared genetics of psychiatric disorders, Nat. Med., 2016, vol. 22, no. 11, pp. 1214—1219. https://doi.org/10.1038/nm.4196

    Article  CAS  PubMed  Google Scholar 

  33. Costas, J., The highly pleiotropic gene SLC39A8 as an opportunity to gain insight into the molecular pathogenesis of schizophrenia, Am. J. Med. Genet., Part B, 2018, vol. 177, no. 2, pp. 274—283. https://doi.org/10.1002/ajmg.b.32545

    Article  CAS  Google Scholar 

  34. Mealer, R.G., Williams, S.E., Daly, M.J., et al., Glycobiology and schizophrenia: a biological hypothesis emerging from genomic research, Mol. Psychiatry, 2020, vol. 25, no. 12, pp. 3129—3139. https://doi.org/10.1038/s41380-020-0753-1

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kirkpatrick, B. and Kennedy, B.K., Accelerated aging in schizophrenia and related disorders: future research, Schizophr. Res., 2018, vol. 196, pp. 4—8. https://doi.org/10.1016/j.schres.2017.06.034

    Article  PubMed  Google Scholar 

  36. Muntané, G., Farré, X., Bosch, E., et al., The shared genetic architecture of schizophrenia, bipolar disorder and lifespan, Hum. Genet., 2021, vol. 140, no. 3, pp. 441—455. https://doi.org/10.1007/s00439-020-02213-8

    Article  PubMed  Google Scholar 

  37. Bay, B., Mortensen, E.L., Hvidtjørn, D., and Kesmodel, U.S., Fertility treatment and risk of childhood and adolescent mental disorders: register based cohort study, BMJ, 2013, vol. 347. https://doi.org/10.1136/bmj.f3978

  38. Svahn, M.F., Hargreave, M., Nielsen, T.S.S., et al., Mental disorders in childhood and young adulthood among children born to women with fertility problems, Hum. Reprod., 2015, vol. 30, no. 9, pp. 2129—2137. https://doi.org/10.1093/humrep/dev172

    Article  CAS  PubMed  Google Scholar 

  39. Rajcan-Separovic, E., Qiao, Y., Tyson, C., et al., Genomic changes detected by array CGH in human embryos with developmental defects, Mol. Hum. Reprod., 2010, vol. 16, no. 2, pp. 125—134. https://doi.org/10.1093/molehr/gap083

    Article  CAS  PubMed  Google Scholar 

  40. Rajcan-Separovic, E., Diego-Alvarez, D., Robinson, W.P., et al., Identification of copy number variants in miscarriages from couples with idiopathic recurrent pregnancy loss, Hum. Reprod., 2010, vol. 25, no. 11, pp. 2913—2922. https://doi.org/10.1093/humrep/deq202

    Article  CAS  PubMed  Google Scholar 

  41. Viaggi, C.D., Cavani, S., Malacarne, M., et al., First-trimester euploid miscarriages analysed by array-CGH, J. Appl. Genet., 2013, vol. 54, no. 3, pp. 353—359. https://doi.org/10.1007/s13353-013-0157-x

    Article  CAS  PubMed  Google Scholar 

  42. Levy, B., Sigurjonsson, S., Pettersen, B., et al., Genomic imbalance in products of conception: single-nucleotide polymorphism chromosomal microarray analysis, Obstet. Gynecol., 2014, vol. 124, no. 2, pp. 202—209. https://doi.org/10.1097/AOG.0000000000000325

    Article  CAS  PubMed  Google Scholar 

  43. Wang, B.T., Chong, T.P., Boyar, F.Z., et al., Abnormalities in spontaneous abortions detected by G-banding and chromosomal microarray analysis (CMA) at a national reference laboratory, Mol. Cytogenet., 2014. https://doi.org/10.1186/1755-8166-7-33

  44. Sato, T., Migita, O., Hata, H., et al., Analysis of chromosome microstructures in products of conception associated with recurrent miscarriage, Reprod. Biomed. Online, 2019, vol. 38, no. 5, pp. 787—795. https://doi.org/10.1016/j.rbmo.2018.12.010

    Article  CAS  PubMed  Google Scholar 

  45. Liu, S., Song, L., Cram, D.S., et al., Traditional karyotyping vs copy number variation sequencing for detection of chromosomal abnormalities associated with spontaneous miscarriage, Ultrasound Obstet. Gynecol., 2015, vol. 46, no. 4, pp. 472—477. https://doi.org/10.1002/uog.14849

    Article  CAS  PubMed  Google Scholar 

  46. Zhou, Q., Wu, S.Y., Amato, K., et al., Spectrum of cytogenomic abnormalities revealed by array comparative genomic hybridization on products of conception culture failure and normal karyotype samples, J. Genet. Genomics, 2016, vol. 43, no. 3, pp. 121—131. https://doi.org/10.1016/j.jgg.2016.02.002

    Article  PubMed  Google Scholar 

  47. Wang, Y., Li, Y., Chen, Y., et al., Systematic analysis of copy-number variations associated with early pregnancy loss, Ultrasound Obstet. Gynecol., 2020, vol. 55, no. 1, pp. 96—104. https://doi.org/10.1002/uog.20412

    Article  CAS  PubMed  Google Scholar 

  48. Rosenfeld, J.A., Tucker, M.E., Escobar, L.F., et al., Diagnostic utility of microarray testing in pregnancy loss, Ultrasound Obstet. Gynecol., 2015, vol. 46, no. 4, pp. 478—486. https://doi.org/10.1002/uog.14866

    Article  CAS  PubMed  Google Scholar 

  49. Kasak, L., Rull, K., Sõber, S., and Laan, M., Copy number variation profile in the placental and parental genomes of recurrent pregnancy loss families, Sci. Rep., 2017, no. 7. https://doi.org/10.1038/srep45327

  50. Luo, S., Chen, X., Yan, T., et al., Application of copy number variation sequencing in genetic analysis of miscarriages in early and middle pregnancy, Cytogenet. Genome Res., 2020, vol. 160, pp. 634—642. https://doi.org/10.1159/000512801

    Article  CAS  PubMed  Google Scholar 

  51. Kashevarova, A.A., Skryabin, N.A., Nikitina, T.V., et al., Ontogenetic pleiotropy of genes involved in CNVs in human spontaneous abortions, Russ. J. Genet., 2019, vol. 55, no. 10, pp. 1214—1226. https://doi.org/10.1134/S1022795419100065

    Article  CAS  Google Scholar 

  52. Zarrei, M., Burton, C.L., Engchuan, W., et al., A large data resource of genomic copy number variation across neurodevelopmental disorders, NPJ Genom. Med., 2019, vol. 4, no. 26. https://doi.org/10.1038/s41525-019-0098-3

  53. Baccarin, M., Picinelli, C., Tomaiuolo, P., et al., Appropriateness of array-CGH in the ADHD clinics: a comparative study, Genes Brain Behav., 2020, vol. 19, no. e12651. https://doi.org/10.1111/gbb.12651

  54. Sciberras, E., Mulraney, M., Silva, D., and Coghill, D., Prenatal risk factors and the etiology of ADHD—review of existing evidence, Curr. Psychiatry Rep., 2017, vol. 19, p. 1. https://doi.org/10.1007/s11920-017-0753-2

  55. Bale, T.L., Baram, T.Z., Brown, A.S., et al., Early life programming and neurodevelopmental disorders, Biol. Psychiatry, 2010, vol. 68, no. 4, pp. 314—319. https://doi.org/10.1016/j.biopsych.2010.05.028

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bhattacharya, S., Townend, J., Shetty, A., et al., Does miscarriage in an initial pregnancy lead to adverse obstetric and perinatal outcomes in the next continuing pregnancy?, BJOG, 2008, vol. 115, no. 13, pp. 1623—1629. https://doi.org/10.1111/j.1471-0528.2008.01943.x

    Article  CAS  PubMed  Google Scholar 

  57. Gunnarsdottir, J., Stephansson, O., Cnattingius, S., et al., Risk of placental dysfunction disorders after prior miscarriages: a population-based study, Am. J. Obstet. Gynecol., 2014, vol. 211, p. 34. e1-8. https://doi.org/10.1016/j.ajog.2014.01.041

  58. Jauniaux, E., Poston, L., Burton, G.J., Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution, Hum. Reprod. Update, 2006, vol. 12, no. 6, pp. 747—755. https://doi.org/10.1093/humupd/dml016

    Article  CAS  PubMed  Google Scholar 

  59. Getahun, D., Rhoads, G.G., Demissie, K., et al., In utero exposure to ischemic-hypoxic conditions and attention-deficit/hyperactivity disorder, Pediatrics, 2013, vol. 131, no. 1, pp. e53–e61. https://doi.org/10.1542/peds.2012-1298

  60. Brown, J.S., Adera, T., and Masho, S.W., Previous abortion and the risk of low birth weight and preterm births, J. Epidemiol. Community Health., 2008, vol. 62, no. 1, pp. 16—22. https://doi.org/10.1136/jech.2006.050369

    Article  PubMed  Google Scholar 

  61. Li, J., Olsen, J., Vestergaard, M., and Obel, C., Low Apgar scores and risk of childhood attention deficit hyperactivity disorder, J. Pediatr., 2011, vol. 158, no. 5, pp. 775—779. https://doi.org/10.1016/j.jpeds.2010.10.041

    Article  PubMed  Google Scholar 

  62. Sucksdorff, M., Lehtonen, L., Chudal, R., et al., Preterm birth and poor fetal growth as risk factors of attention-deficit/hyperactivity disorder, Pediatrics, 2015, vol. 136, no. 3, pp. e599—e608. https://doi.org/10.1542/peds.2015-1043

    Article  PubMed  Google Scholar 

  63. Schupf, N. and Ottman, R., Risk of epilepsy in offspring of affected women: association with maternal spontaneous abortion, Neurology, 2001, vol. 57, no. 9, pp. 1642—1649. https://doi.org/10.1212/wnl.57.9.1642

    Article  CAS  PubMed  Google Scholar 

  64. Ahrens, K.A., Rossen, L.M., and Branum, A.M., Pregnancy loss history at first parity and selected adverse pregnancy outcomes, Ann. Epidemiol., 2016, vol. 26, no. 7, pp. 474—481. https://doi.org/10.1016/j.annepidem.2016.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  65. Paz Levy, D., Wainstock, T., Sheiner, E., et al., Maternal recurrent pregnancy loss is associated with an increased risk for long-term neurological morbidity in offspring, Dev. Med. Child Neurol., 2019, vol. 61, no. 1, pp. 91—97. https://doi.org/10.1111/dmcn.13976

    Article  PubMed  Google Scholar 

  66. Wang, H., Li, F., Miao, M., et al., Maternal spontaneous abortion and the risk of attention-deficit/hyperactivity disorder in offspring: a population-based cohort study, Hum. Reprod., 2020, vol. 35, no. 5, pp. 1211—1221. https://doi.org/10.1093/humrep/deaa035

    Article  PubMed  Google Scholar 

  67. Fergusson, D.M., Horwood, L.J., and Boden, J.M., Abortion and mental health disorders: evidence from a 30-year longitudinal study, Br. J. Psychiatry, 2008, vol. 193, no. 6, pp. 444—451. https://doi.org/10.1192/bjp.bp.108.056499

    Article  PubMed  Google Scholar 

  68. Tsigos, C. and Chrousos, G.P., Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress, J. Psychosom. Res., 2002, vol. 53, no. 4, pp. 865—871. https://doi.org/10.1016/s0022-3999(02)00429-4

    Article  PubMed  Google Scholar 

  69. Seckl, J.R. and Holmes, M.C., Mechanisms of disease: glucocorticoids, their placental metabolism and fetal “programming” of adult pathophysiology, Nat. Clin. Pract. Endocrinol. Metab., 2007, vol. 3, no. 6, pp. 479—488. https://doi.org/10.1038/ncpendmet0515

    Article  CAS  PubMed  Google Scholar 

  70. Lewis, A.J., Galbally, M., Gannon, T., and Symeonides, C., Early life programming as a target for prevention of child and adolescent mental disorders, BMC Med., 2014, vol. 12, p. 33. https://doi.org/10.1186/1741-7015-12-33

  71. Renaud, S.J., Cotechini, T., Quirt, J.S., et al., Spontaneous pregnancy loss mediated by abnormal maternal inflammation in rats is linked to deficient uteroplacental perfusion, J. Immunol., 2011, vol. 186, no. 3, pp. 1799—1808. https://doi.org/10.4049/jimmunol.1002679

    Article  CAS  PubMed  Google Scholar 

  72. Ji, H., Yu, Y., Miao, M., et al., Risk of intellectual disability and maternal history of spontaneous abortion: a nationwide cohort study, Dev. Med. Child Neurol., 2021, vol. 63, no. 7, pp. 831—838. https://doi.org/10.1111/dmcn.14839

    Article  PubMed  Google Scholar 

  73. Gaskins, A.J., Rich-Edwards, J.W., Hauser, R., et al., Maternal prepregnancy folate intake and risk of spontaneous abortion and stillbirth, Obstet. Gynecol., 2014, vol. 124, no. 1, pp. 23—31. https://doi.org/10.1097/AOG.0000000000000343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. DeVilbiss, E.A., Magnusson, C., Gardner, R.M., et al., Antenatal nutritional supplementation and autism spectrum disorders in the Stockholm youth cohort: population based cohort study, BMJ, 2017, 359:j4273. https://doi.org/10.1136/bmj.j4273

  75. Carbone, M.A., Jordan, K.W., Lyman, R.F., et al., Phenotypic variation and natural selection at Catsup, a pleiotropic quantitative trait gene in Drosophila, Curr. Biol., 2006, vol. 16, no. 9, pp. 912—919. https://doi.org/10.1016/j.cub.2006.03.051

    Article  CAS  PubMed  Google Scholar 

  76. Kirov, G., Rees, E., Walters, J.T., et al., The penetrance of copy number variations for schizophrenia and developmental delay, Biol. Psychiatry, 2014, vol. 75, no. 5, pp. 378—385. https://doi.org/10.1016/j.biopsych.2013.07.022

    Article  CAS  PubMed  Google Scholar 

  77. Huguet, G., Schramm, C., Douard, E., et al., Measuring and estimating the effect sizes of copy number variants on general intelligence in community-based samples, JAMA Psychiatry, 2018, vol. 75, no. 5, pp. 447—457. https://doi.org/10.1001/jamapsychiatry.2018.0039

    Article  PubMed  PubMed Central  Google Scholar 

  78. Spielmann, M., Lupiáñez, D.G., and Mundlos, S., Structural variation in the 3D genome, Nat. Rev. Genet., 2018, vol. 19, no. 7, pp. 453—467. https://doi.org/10.1038/s41576-018-0007-0

    Article  CAS  PubMed  Google Scholar 

  79. Stankiewicz, P. and Lupski, J.R., Structural variation in the human genome and its role in disease, Annu. Rev. Med., 2010, vol. 61, pp. 437—455. https://doi.org/10.1146/annurev-med-100708-204735

    Article  CAS  PubMed  Google Scholar 

  80. Iafrate, A.J., Feuk, L., Rivera, M.N., et al., Detection of large-scale variation in the human genome, Nat. Genet., 2004, vol. 36, no. 9, pp. 949—951. https://doi.org/10.1038/ng1416

    Article  CAS  PubMed  Google Scholar 

  81. Hastings, P.J., Lupski, J.R., Rosenberg, S.M., and Ira, G., Mechanisms of change in gene copy number, Nat. Rev. Genet., 2009, vol. 10, no. 8, pp. 551—564. https://doi.org/10.1038/nrg2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wilfert, A.B., Sulovari, A., Turner, T.N., et al., Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications, Genome Med., 2017, vol. 9, no. 1, pp. 1—16. https://doi.org/10.1186/s13073-017-0498-x

    Article  CAS  Google Scholar 

  83. Munnich, A., Demily, C., Frugère, L., et al., Impact of on-site clinical genetics consultations on diagnostic rate in children and young adults with autism spectrum disorder, Mol. Autism, 2019, vol. 10, no. 1, pp. 1—10. https://doi.org/10.1186/s13229-019-0284-2

    Article  CAS  Google Scholar 

  84. Rees, E., Walters, J.T., Georgieva, L., et al., Analysis of copy number variations at 15 schizophrenia-associated loci, Br. J. Psychiatry, 2014, vol. 204, no. 2, pp. 108—114. https://doi.org/10.1192/bjp.bp.113.131052

    Article  PubMed  PubMed Central  Google Scholar 

  85. Crawford, K., Bracher-Smith, M., Owen, D., et al., Medical consequences of pathogenic CNVs in adults: analysis of the UK Biobank, J. Med. Genet., 2019, vol. 56, no. 3, pp. 131—138. https://doi.org/10.1136/jmedgenet-2018-105477

    Article  CAS  PubMed  Google Scholar 

  86. Macé, A., Tuke, M.A., Deelen, P., et al., CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits, Nat. Commun., 2017, vol. 8, no. 1, p. 744. https://doi.org/10.1038/s41467-017-00556-x

  87. Owen, D., Bracher-Smith, M., Kendall, K.M., et al., Effects of pathogenic CNVs on physical traits in participants of the UK Biobank, BMC Genomics, 2018, vol. 19, no. 1, p. 867. https://doi.org/10.1186/s12864-018-5292-7

  88. Stefansson, H., Meyer-Lindenberg, A., Steinberg, S., et al., CNVs conferring risk of autism or schizophrenia affect cognition in controls, Nature, 2014, vol. 505, no. 7483, pp. 361—366. https://doi.org/10.1038/nature12818

    Article  CAS  PubMed  Google Scholar 

  89. McDonald-McGinn, D.M., Sullivan, K.E., Marino, B., et al., 22q11.2 deletion syndrome, Nat. Rev. Dis. Primers, 2015, vol. 1, p. 15071. https://doi.org/10.1038/nrdp.2015.71

  90. Boot, E., Butcher, N.J., Udow, S., et al., Typical features of Parkinson disease and diagnostic challenges with microdeletion 22q11.2, Neurology, 2018, vol. 90, no. 23, pp. e2059—e2067. https://doi.org/10.1212/WNL.0000000000005660

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gudmundsson, O.O., Walters, G.B., Ingason, A., et al., Attention-deficit hyperactivity disorder shares copy number variant risk with schizophrenia and autism spectrum disorder, Transl. Psychiatry, 2019, vol. 9, no. 1, p. 258. https://doi.org/10.1038/s41398-019-0599-y

  92. Maisenbacher, M.K., Merrion, K., Pettersen, B., et al., Incidence of the 22q11.2 deletion in a large cohort of miscarriage samples, Mol. Cytogenet., 2017, vol. 10, p. 6. https://doi.org/10.1186/s13039-017-0308-6

  93. Srebniak, M.I., Knapen, M.F., Polak, M., et al., The influence of SNP-based chromosomal microarray and NIPT on the diagnostic yield in 10,000 fetuses with and without fetal ultrasound anomalies, Hum. Mutat., 2017, vol. 38, no. 7, pp. 880—888. https://doi.org/10.1002/humu.23232

    Article  CAS  PubMed  Google Scholar 

  94. Levy, B. and Wapner, R., Prenatal diagnosis by chromosomal microarray analysis, Fertil. Steril., 2018, vol. 109, no. 2, pp. 201—212. https://doi.org/10.1016/j.fertnstert.2018.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chau, M.H.K., Cao, Y., Kwok, Y.K.Y., et al. Characteristics and mode of inheritance of pathogenic copy number variants in prenatal diagnosis, Am. J. Obstet. Gynecol., 2019, vol. 221, no. 5, p. 493.E1-493.E11. https://doi.org/10.1016/j.ajog.2019.06.007

  96. Dixon, M.J., Marazita, M.L., Beaty, T.H., and Murray, J.C., Cleft lip and palate: understanding genetic and environmental influences, Nat. Rev. Genet., 2011, vol. 12, no. 3, pp. 167—178. https://doi.org/10.1038/nrg2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Setó-Salvia, N. and Stanier, P., Genetics of cleft lip and/or cleft palate: association with other common anomalies, Eur. J. Med. Genet., 2014, vol. 57, no. 8, pp. 381—393. https://doi.org/10.1016/j.ejmg.2014.04.003

    Article  PubMed  Google Scholar 

  98. Wang, H., Chau, M.H.K., Cao, Y., et al., Chromosome copy number variants in fetuses with syndromic malformations, Birth Defects Res., 2017, vol. 109, no. 10, pp. 725—733. https://doi.org/10.1002/bdr2.1054

    Article  CAS  PubMed  Google Scholar 

  99. Liao, C., Fu, F., Yi, C.X., et al., Prenatal diagnosis of an atypical 1q21.1 microdeletion and duplication associated with foetal urogenital abnormalities, Gene, 2012, vol. 1, no. 507, pp. 92—94. https://doi.org/10.1016/j.gene.2012.07.008

    Article  CAS  Google Scholar 

  100. Zhang, H., Yue, F., Zhang, X., et al., Prenatal detection of distal 1q21.1q21.2 microduplication with abnormal ultrasound findings: two cases report and literature review, Medicine, 2021, vol. 100, no. 1, p. e24227. https://doi.org/10.1097/MD.0000000000024227

  101. Yue, F., Deng, S., Xi, Q., et al., Prenatal detection of a 3q29 microdeletion in a fetus with ventricular septum defect: a case report and literature review, Medicine 2021, vol. 100, no. 1, p. 24224. https://doi.org/10.1097/MD.0000000000024224

  102. Lu, F., Xue, P., Zhang, B., et al., Estimating the frequency of causal genetic variants in foetuses with congenital heart defects: a Chinese cohort study, Orphanet J. Rare Dis., 2022, vol. 17, p. 2. https://doi.org/10.1186/s13023-021-02167-8

  103. Coyan, A.G. and Dyer, L.M., 3q29 microduplication syndrome: clinical and molecular description of eleven new cases, Eur. J. Med. Genet., 2020, vol. 63, no. 12, p. 104083. https://doi.org/10.1016/j.ejmg.2020.104083

    Article  PubMed  Google Scholar 

  104. Chen, C.P., Lin, C.J., Chern, S.R., et al., Prenatal diagnosis and molecular cytogenetic characterization of a 1.07-Mb microdeletion at 5q35.2–q35.3 associated with NSD1 haploinsufficiency and Sotos syndrome, Taiwan. J. Obstet. Gynecol., 2014, vol. 53, no. 4, pp. 583—587. https://doi.org/10.1016/j.tjog.2014.10.002

    Article  PubMed  Google Scholar 

  105. Marcato, L., Turolla, L., Pompilii, E., et al., Prenatal phenotype of Williams-Beuren syndrome and of the reciprocal duplication syndrome, Clin. Case Rep., 2014, vol. 2, no. 2, p. 25. https://doi.org/10.1002/ccr3.48

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kobalka, A.J., Mrak, R.E., and Gunning, W.T., A case report of in utero Williams syndrome arterial malformation, Fetal Pediatr. Pathol., 2017, vol. 36, no. 6, pp. 452—456. https://doi.org/10.1080/15513815.2017.1379040

    Article  PubMed  Google Scholar 

  107. Srinivasan, S., Howley, L.W., Cuneo, B.F., and Chatfield, K.C., In-utero idiopathic ductal constriction: a prenatal manifestation of Alagille and Williams syndrome arteriopathy, J. Perinatol., 2018, vol. 38, no. 11, pp. 1453—1456. https://doi.org/10.1038/s41372-018-0221-9

    Article  PubMed  Google Scholar 

  108. Yuan, M., Deng, L., Yang, Y., and Sun, L., Intrauterine phenotype features of fetuses with Williams-Beuren syndrome and literature review, Ann. Hum. Genet., 2020, vol. 84, no. 2, pp. 169—176. https://doi.org/10.1111/ahg.12360

    Article  CAS  PubMed  Google Scholar 

  109. Dang, Y., Wan, S., Zheng, Y., et al., The prenatal diagnosis of seven fetuses with 7q11.23 microdeletion or microduplication, Fetal Pediatr. Pathol., 2020, vol. 39, no. 4, pp. 269—276. https://doi.org/10.1080/15513815.2019.1651802

    Article  PubMed  Google Scholar 

  110. Faivre, L., Morichon-Delvallez, N., Viot, G., et al., Prenatal diagnosis of an 8p23.1 deletion in a fetus with a diaphragmatic hernia and review of the literature, Prenat. Diagn., 1998, vol. 18, no. 10, pp. 1055—1060. https://doi.org/10.1002/(sici)1097-0223(1998100)18:10<1055::aid-pd405>3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  111. Hoellen, F. and Weichert, J., Sonographic diagnosis of multiple cardiovascular malformations in a fetus with an interstitial 8p23.1 deletion, J. Ultrasound Med., 2012, vol. 31, no. 10, pp. 1689—1692. https://doi.org/10.7863/jum.2012.31.10.1689

    Article  PubMed  Google Scholar 

  112. Keitges, E.A., Pasion, R., Burnside, R.D., et al., Prenatal diagnosis of two fetuses with deletions of 8p23. 1, critical region for congenital diaphragmatic hernia and heart defects, Am. J. Med. Genet., Part A, 2013, vol. 161, no. 7, pp. 1755—1758. https://doi.org/10.1002/ajmg.a.35965

    Article  CAS  Google Scholar 

  113. Barber, J.C., Bunyan, D., Curtis, M., et al., 8p23.1 duplication syndrome differentiated from copy number variation of the defensin cluster at prenatal diagnosis in four new families, Mol. Cytogenet., 2010, vol. 3, p. 3. https://doi.org/10.1186/1755-8166-3-3

  114. Barber, J.C., Rosenfeld, J.A., Foulds, N., et al., 8p23.1 duplication syndrome; common, confirmed, and novel features in six further patients, Am. J. Med. Genet., Part A, 2013, vol. 161, no. 3, pp. 487—500. https://doi.org/10.1002/ajmg.a.35767

    Article  CAS  Google Scholar 

  115. Zhang, Y., Li, Y., Wang, Y., et al., 8p23.1 duplication detected by array-CGH with complete atrioventricular septal defect and unilateral hand preaxial hexadactyly, Am. J. Med. Genet., Part A, 2013, vol. 161, no. 3, pp. 561—565. https://doi.org/10.1002/ajmg.a.35596

    Article  CAS  Google Scholar 

  116. Tang, H.S., Wang, D.G., Xie, X.M., and Li, D.Z., Apparent germline mosaicism for a 15q11-q13 deletion causing recurrent Angelman syndrome in a Chinese family, Eur. J. Obstet. Gynecol. Reprod. Biol., 2019, vol. 236, pp. 255—257. https://doi.org/10.1016/j.ejogrb.2019.02.029

    Article  CAS  PubMed  Google Scholar 

  117. Bigi, N., Faure, J.M., Coubes, C., et al., Prader-Willi syndrome: is there a recognizable fetal phenotype?, Prenat. Diagn., 2008, vol. 28, no. 9, pp. 796—799. https://doi.org/10.1002/pd.1973

    Article  PubMed  Google Scholar 

  118. Traisrisilp, K., Sirikunalai, P., Sirilert, S., et al., Cardiac rhabdomyoma as a possible new prenatal sonographic feature of Prader-Willi syndrome, J. Obstet. Gynaecol. Res., 2022, vol. 48, no. 1, pp. 239—243.

    Article  Google Scholar 

  119. Lin, C.Z., Qi, B.R., Hu, J.S., et al., Chromosome 15q13 microduplication in a fetus with cardiac rhabdomyoma: a case report, Mol. Cytogenet., 2019, vol. 12, p. 24. https://doi.org/10.1186/s13039-019-0437-1

  120. Fan, Y.S. and Farrell, S.A., Prenatal diagnosis of interstitial deletion of 17(p11.2p11.2) (Smith-Magenis syndrome), Am. J. Med. Genet., 1994, vol. 49, no. 2, pp. 253—254. https://doi.org/10.1002/ajmg.1320490220

    Article  CAS  PubMed  Google Scholar 

  121. Thomas, D.G., Jacques, S.M., Flore, L.A., et al., Prenatal diagnosis of Smith-Magenis syndrome (del 17p11.2), Fetal Diagn. Ther., 2000, vol. 15, no. 6, pp. 335—337. https://doi.org/10.1159/000021032

    Article  CAS  PubMed  Google Scholar 

  122. Zhou, Y., Xie, Y., Zhu, Y., et al., Smith-Magenis syndrome in monozygotic twin fetuses presenting with discordant phenotypes and uteroplacental insufficiency, Mol. Med. Rep., 2016, vol. 13, no. 1, pp. 347—352. https://doi.org/10.3892/mmr.2015.4538

    Article  CAS  PubMed  Google Scholar 

  123. Lei, T.Y., Li, R., Fu, F., et al., Prenatal diagnosis of Smith-Magenis syndrome in two fetuses with increased nuchal translucency, mild lateral ventriculomegaly, and congenital heart defects, Taiwan. J. Obstet. Gynecol., 2016, vol. 55, no. 6, pp. 886—890. https://doi.org/10.1016/j.tjog.2015.07.007

    Article  PubMed  Google Scholar 

  124. Zhang, P., Sun, Y., Tian, H., et al., Prenatal diagnosis and neonatal phenotype of a de novo microdeletion of 17p11.2p12 associated with Smith-Magenis syndrome and external genital defects, J. Genet., 2020, vol. 99, p. 50.

  125. Cai, M., Fu, X., Xu, L., et al., Prenatal diagnosis of 17p11.2 copy number abnormalities associated with Smith-Magenis and Potocki-Lupski syndromes in fetuses, Front. Genet., 2021, vol. 2670. https://doi.org/10.3389/fgene.2021.779237

  126. Popowski, T., Molina-Gomes, D., Loeuillet, L., et al., Prenatal diagnosis of the duplication 17p11.2 associated with Potocki-Lupski syndrome in a foetus presenting with mildly dysmorphic features, Eur. J. Med. Genet., 2012, vol. 55, no. 12, pp. 723—726. https://doi.org/10.1016/j.ejmg.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  127. Yusupov, R., Roberts, A.E., Lacro, R.V., et al., Potocki-Lupski syndrome: an inherited dup(17)(p11.2p11.2) with hypoplastic left heart, Am. J. Med. Genet., Part A, 2011, vol. 155, no. 2, pp. 367—371. https://doi.org/10.1002/ajmg.a.33845

    Article  Google Scholar 

  128. Bravo, C., Gamez, F., Perez, R., et al., Prenatal diagnosis of Potocki-Lupski syndrome in a fetus with hypoplastic left heart and aberrant right subclavian artery, J. Perinatol., 2013, vol. 33, no. 5, pp. 394—396. https://doi.org/10.1038/jp.2012.77

    Article  CAS  PubMed  Google Scholar 

  129. Dhanaraj, D., Chu, A., Pappas, J.G., et al., Potocki-Lupski syndrome in conjunction with bilateral clubfoot, J. Ped. Orthop., B, 2015, vol. 24, no. 4, pp. 373—376. https://doi.org/10.1097/BPB.0000000000000131

    Article  Google Scholar 

  130. McDonald-McGinn, D.M. and Sullivan, K.E., Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome), Medicine, 2011, vol. 90, no. 1, pp. 1—18. https://doi.org/10.1097/MD.0b013e3182060469

    Article  PubMed  Google Scholar 

  131. Kashevarova, A.A., Lebedev, I.N., and Nazarenko, L.P., Arkhitektura genoma i khromosomnye bolezni: sindromy retsiproknykh mikrodeletsii i mikroduplikatsii (Genome Architecture and Chromosomal Diseases: Reciprocal Microdeletion and Microduplication Syndromes), Tomsk: Pechatnaya Manufaktura, 2014.

Download references

Funding

This work was supported by the Russian Science Foundation (project 21-65-00017, https://rscf.ru/project/21-65-00017/)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kashevarova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Kashevarova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashevarova, A.A., Drozdov, G.V., Fedotov, D.A. et al. Pleiotropy of Copy Number Variation in Human Genome. Russ J Genet 58, 1180–1192 (2022). https://doi.org/10.1134/S1022795422100040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422100040

Keywords:

Navigation