Skip to main content
Log in

The Role of Some Flavonoids and Oleuropein in the Formation of Frost Resistance of Olea europaea L.

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The degree of participation of oleuropein, rutin, and cinaroside in the processes of formation of winter hardiness and frost resistance in four varieties of European olives Olea europaea L. and subspecies O. europaea subsp. сuspidata (Wall. and G. Don) Cif. was determined in natural and laboratory conditions. To assess the level of stress in the leaves, the proline content was determined, the maximum of which was noted in the weakly resistant subspecies O. europaea subsp. сuspidata. To identify the peculiarities of the accumulation of phenolic substances in natural conditions, the changes in their content in leaves and the average 10-day values of equivalent effective temperatures were compared. In laboratory conditions, the content of phenolic compounds was studied under different cooling modes: 0°C, 6 h → –8°C, 8 h (option 1); 0°С, 6 h → –2°С, 6 h → –8°С, 8 h (option 2); –8°C, 8 h (option 3); –8°C, 12 h (option 4). It was found that keeping shoots at 0°C for 6 h had a positive effect on O. europaea’s winter hardiness, while 6 h of exposure at –2°C led to the development of stress. In the first variant of the experiment, the oleuropein content increased in the resistant variety Nikitskaya. In varieties with an average degree of resistance (Razzo and Ascolano), activation of the biosynthesis of flavonoids and oleuropein was observed. In the weakly resistant Coreggiolo variety, phenolic substances were actively consumed, and trace amounts of oleuropein and no changes in the content of rutin and cynaroside in the subspecies O. europaea subsp. cuspidata, probably, were associated with his less close family ties with O. europaea. It was revealed that, in genotypes with low frost resistance, activation of the synthesis of phenolic compounds occurred only under the influence of a stress factor (–2°C), which did not allow them to adapt in a timely manner, whereas these processes began at earlier stages of cold adaptation in relatively resistant varieties. For the varieties Coreggiolo, Razzo and Ascoliano, prolonged exposure to negative temperatures was a critical factor, while it was lethal for O. europaea subsp. cuspidata (option 4). Differences in the synthesis of phenolic compounds identified under these conditions were are associated not only with the degree of frost resistance but also with the variety specificity of O. europaea genotypes. The obtained data suggested that oleuropein, rutin, and cynaroside are elements of the mechanisms of protection of olive plants from the negative effects of negative temperatures. Apparently, the studied compounds play the role of cryoprotectors and antioxidants and participate in the formation of winter hardiness. The conditions for activating the biosynthesis of phenolic compounds were of great importance. In the highly resistant variety Nikitskaya, their accumulation occurred under the influence of temperatures close to 0°С and directly during the initial damaging temperatures in the unstable varieties Coreggiolo and subspecies O. europaea subsp. сuspidata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Efimov, V.V., Volodin, E.M., and Anisimov, A.E., Modeling of the Black Sea region climate changes in the XXI century, Phys. Oceanogr., no. 2, pp. 3–13. https://doi.org/10.22449/1573-160X-2015-2-3-13

  2. Tumanov, I.I., Fiziologiya zakalivaniya i morozoustoichivosti rastenii (Physiology of Hardening and Frost Resistance of Plants), Moscow: Nauka, 1979.

    Google Scholar 

  3. Petrov, K.A., Kriorezistentnost’ rastenii: ekologo-fiziologicheskie i biokhimicheskie aspekty (Plant Cryoresistance: Ecological, Physiological and Biochemical Aspects), Novosibirsk: Izd. dom Sib. Otd. Ross. Akad. Nauk, 2016.

  4. Sin’kevich, M.S., Naraikina, N.V., and Trunova, T.I., Processes hindering activation of lipid peroxidation in cold-tolerant plants under hypothermia, Russ. J. Plant Physiol., 2011, vol. 58, p. 1020. https://doi.org/10.1134/S1021443711050232

    Article  CAS  Google Scholar 

  5. Sharma, P., Jha, A., Dubey, R., and Pessarakli, M., Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, J. Bot., 2012. https://doi.org/10.1155/2012/217037

  6. Ortega-Garcıa, F. and Peragon, J., Phenol metabolism in the leaves of the olive tree (Olea europaea L.) cv. Picual, Verdial, Arbequina, and Frantoio during Ripening, J. Agric. Food Chem., 2010, vol. 58, p. 12440. https://doi.org/10.1021/jf102827m

    Article  CAS  PubMed  Google Scholar 

  7. Talhaoui, N., Taamalli, A., Gomez-Caravaca, A.M., Fernandez-Gutierrez, A., and Segura-Carretero, A., Phenolic compounds in olive leaves: analytical determination, biotic and abiotic influence, and health benefits, Food Res. Int., 2015, vol. 77, p. 92. https://doi.org/10.1016/j.foodres.2015.09.011

    Article  CAS  Google Scholar 

  8. Petruccelli, R., Bartolini, G., Ganino, T., Zelasco, S., Lombardo, L., Perri, E., Durante, M., and Bernardi, R., Cold stress, freezing adaptation, varietal susceptibility of Olea europaea L., Plants. 2022, vol. 11, p. 1367. https://doi.org/10.3390/plants11101367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Otero, D., Lorini, A., Oliveira, F., Antunes, B., Oliveira, R., and Zambiazi, R., Leaves of Olea europaea L. as a source of oleuropein: characteristics and biological aspects, Res. Soc. Dev., 2021, vol. 10, p. e185101321130. https://doi.org/10.33448/rsd-v10i13.21130

    Article  Google Scholar 

  10. Alagna, F., Geu-Flores, F., Kries, H., Panara, F., Baldoni, L., O’Connor, S.E., and Osbourn, A., Identification and characterization of the iridoid synthase involved in oleuropein biosynthesis in olive (Olea europaea) fruits, J. Biol. Chem., 2016, vol. 291, p. 5542. https://doi.org/10.1074/jbc.M115.701276

    Article  CAS  PubMed  Google Scholar 

  11. Panizzi, L., Scarpati, M.L., and Oriente, E.G., Structure of the bitter glucoside oleuropein. Note II., Gazz. Chim. Ital., 1960, vol. 90, p. 1449.

    CAS  Google Scholar 

  12. Bonechi, C., Donati, A., Tamasi, G., Pardini, A., Rostom, H., Leone, G., Lamponi, S., Consumi, M., Magnani, A., and Rossi, C., Chemical characterization of liposomes containing nutraceutical compounds: tyrosol, hydroxytyrosol and oleuropein, Biophys. Chem., 2019, vol. 246, p. 25. https://doi.org/10.1016/j.bpc.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  13. Rao, G., Zhang, J., and Liu, X., De novo assembly of a new Olea europaea genome accession using nanopore sequencing, Hortic. Res., 2021, vol. 8, p. 64. https://doi.org/10.1038/s41438-021-00498-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ortega-García, F. and Peragón, J., The response of phenylalanine ammonia-lyase, polyphenol oxidase and phenols to cold stress in the olive tree (Olea europaea L. cv. Picual), J. Sci. Food Agric., 2009, vol. 89, p. 1565. https://doi.org/10.1002/jsfa.3625

    Article  CAS  Google Scholar 

  15. Raimbault, A.K., Marie-Alphonsine, P.A., Horry, J.P., Francois-Haugrin, M., Romuald, K., and Soler, A., Polyphenol oxidase and peroxidase expression in four pineapple varieties (Ananas comosus L.) after a chilling injury, J. Agric. Food Chem., 2011, vol. 59, p. 342. https://doi.org/10.1021/jf102511z

    Article  CAS  PubMed  Google Scholar 

  16. Hashempour, A., Ghasemnezhad, M., Ghazvini, R.F., and Sohani, M.M., Olive (Olea europaea L.) freezing tolerance related to antioxidant enzymes activity during cold acclimation and non acclimation, Acta Physiol. Plant., 2014, vol. 36, p. 3231. https://doi.org/10.1007/s11738-014-1689-3

    Article  CAS  Google Scholar 

  17. Mougiou, N., Baalbaki, B., Doupis, G., Kavroulakis, N., Poulios, S., Vlachonasios, K., and Koubouris, G., The effect of low temperature on physiological, biochemical and flowering functions of olive tree in relation to genotype, Sustainability, 2020, vol. 12, p. 10065. https://doi.org/10.3390/su122310065

    Article  CAS  Google Scholar 

  18. Jiang, C., Hu, W., Lu, H., Chen, L., Niu, E., Zhu, S., and Shen, G., Alterations of phenotype, physiology, and functional substances reveal the chilling-tolerant mechanism in two common Olea europaea cultivars, Front. Plant Sci., 2023, vol. 14, p. 1046719. https://doi.org/10.3389/fpls.2023.1046719

    Article  PubMed  PubMed Central  Google Scholar 

  19. Afanas'ev, I., Dorozhko, A.I., Brodskii, A., Kostyuk, V., and Potapovitch, A., Chelating and free radical scavenging mechanisms of inhibitory action of Rutin and Qercetin in lipid peroxidation, Biochem. Pharmacol., 1989, vol. 38, p. 1763. .https://doi.org/10.1016/0006-2952(89)90410-3

    Article  CAS  PubMed  Google Scholar 

  20. Mechri, B., Tekaya, M., Hammami, M., and Chehab, H., Effects of drought stress on phenolic accumulation in greenhouse-grown olive trees (Olea europaea), Biochem. Syst. Ecol., 2020, vol. 92, p. 104112. https://doi.org/10.1016/j.bse.2020.104112

    Article  CAS  Google Scholar 

  21. Genzel, F., Dichke, M.D., Junker-Frohn, L.V., Neuwohner, A., Thiele, B., Putz, A., Usadel, B., Wormit, A., and Wiese-Klinkenberg, A., Impact of moderate cold and salt stress on the accumulation of antioxidant flavonoids in the leaves of two capsicum cultivars, J. Agric. Food Chem., 2021, vol. 69, p. 6431. https://doi.org/10.1021/acs.jafc.1c00908

    Article  CAS  PubMed  Google Scholar 

  22. Hodaei, M., Rahimmalek, M., Arzani, A., and Talebi, M., The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L., Ind. Crops Prod., 2018, vol. 120, p. 295. https://doi.org/10.1016/j.indcrop.2018.04.073

    Article  CAS  Google Scholar 

  23. Palii, A.E., Palii, I.N., Fedotova, I.A., Melkozerova, E.A., Tsyupka, S.Yu., and Grebennikova, O.A., Dynamics of phenolic compounds in European olive leaves during the cold period on the southern coast of Crimea, Bull. Gos. Nikitskogo Bot. Sada, 2019, no. 133, p. 51. https://doi.org/10.36305/0513-1634-2019-133-51-56

  24. Gubanova, T.B., Brailko, V.A., and Myazina, L.F., Winter hardiness of some species of the Oleaceae family in the collection of the Nikitsky Botanical Garden, Hort. bot., 2018, vol. 13, p. 250. https://doi.org/10.15393/j4.art.2018.5784

  25. Lishchuk, A.I., Fiziologicheskie i biofizicheskie metody v selektsii plodovykh kul’tur: metodicheskie rekomendatsii (Physiological and Biophysical Methods in the Selection of Fruit Crops: Methodological Recommendations), Moscow: VASKHNIL, 1991.

    Google Scholar 

  26. Korsakova, S.P., Review of natural hydrometeorological phenomena in the area of the Nikitsky Botanical Garden, Sbor. nauch. tr. Nikitskogo bot. sada, 2014, vol. 139, p. 79.

  27. Vrublevska, O.O. and Katerusha, G.P., Applied Climatology. Lecture notes, Dnipropetrovsk: Economics, 2005.

    Google Scholar 

  28. Andryushchenko, V.K., Sayanova, V.V., and Zhuchenko, A.A., Modification of the method for determining proline to identify drought-resistant forms Lycopersicon Tourn, Izv. Ak. nauk Moldova SSR. Ser. biol. khim. nauk, 1981, vol. 4, p. 55.

  29. Plazonic, A., Bucar, F., Males, Z., Mornar, A., Nigovi, B., and Kujundzij, N., Identification and quantification of flavonoids and phenolic acids in burr parsley (Caucalis platycarpos L.), using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry, Molecules, 2009, vol. 14, no. 7, p. 2466. https://doi.org/10.3390/molecules14072466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, p. 405. https://doi.org/10.1016/S1360-1385(02)02312-9

    Article  CAS  PubMed  Google Scholar 

  31. Haratym, W., Weryszko-Chmielewska, E., and Konarska, A., Microstructural and histochemical analysis of aboveground organs of Centaurea cyanus used in herbal medicine, Protoplasma, 2020, vol. 257, p. 285. https://doi.org/10.1007/s00709-019-01437-4

    Article  CAS  PubMed  Google Scholar 

  32. Zaitseva, S.M., Kalashnikova, E.A., Kirakosyan, R.N., Berkovskaya, I.A., Belevtsova, A.S., and Shcherbakova, A.A., Histochemical determination of the localization of flavonoids in epidermal tissues medicinal plants Dioscorea caucasica Lipsky, Taxus canadensis Marsh, Ginkgo biloba, Helianthus annuus L., Veter., zootekhn. biotekhn., 2022, vol. 2, p. 66. https://doi.org/10.36871/vet.zoo.bio.202202009

  33. Korsakova, S. and Korsakov, P., Features development of olive trees during the growing season in the Southern coast of the Crimea, BIO Web Conf., 2021, vol. 38, p. 00060. https://doi.org/10.1051/bioconf/20213800060

  34. Zaprometov, M.N., On the functional role of phenolic compounds in plants, Russ. J. Plant Physiol., 1992, vol. 39, p. 1197.

    CAS  Google Scholar 

  35. Fahimirad, S., Karimzadeh, G., and Ghanati, F., Cold-induced changes of antioxidant enzymes activity and lipid peroxidation in two canola (Brassica napus L.) cultivars, J. Plant Physiol. Breed., 2013, vol. 3, p. 1.

    Google Scholar 

  36. Olenichenko, N.A., Ossipov, V.I., and Zagoskina, N.V., Effect of cold hardening on the phenolic complex of winter wheat leaves, Russ. J. Plant Physiol., 2006, vol. 53, p. 495. https://doi.org/10.1134/S1021443706040108

    Article  CAS  Google Scholar 

  37. Janas, K.M., Cvikrova, M., Palagiewicz, A., Szafranska, K., and Posmyk, M.M., Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature, Plant Sci., 2002, vol. 163, p. 369. https://doi.org/10.1016/S0168-9452(02)00136-X

    Article  CAS  Google Scholar 

  38. Korsakova, S.P. and Korsakov, P.B., Dynamics of time boundaries of climatic seasons on the Southern Coast of Crimea under climate change conditions, Bull. Gos. Nikitskogo Bot. Sada, 2018, no. 127, p. 100. https://doi.org/10.25684/NBG.boolt.127.2018.15

  39. Lopez-Bernal, A., Garcia-Tejera, O., Testi, L., Orgaz, F., and Villalobos, F., Studying and modelling winter dormancy in olive trees, Agric. For. Meteorol., 2020, vol. 280, p. 107776.https://doi.org/10.1016/j.agrformet.2019.107776

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out on the equipment of the Center for Collective Use “Physiological and Biochemical Methods for Studying Plant Objects” of the Nikita Botanical Garden, National Scientific Center (Yalta, Russia).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Paly.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: PPO—polyphenol oxidase; EET—equivalent effective temperatures; SCC—southern coast of Crimea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paly, A.E., Gubanova, T.B. The Role of Some Flavonoids and Oleuropein in the Formation of Frost Resistance of Olea europaea L.. Russ J Plant Physiol 70, 164 (2023). https://doi.org/10.1134/S1021443723700267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723700267

Keywords:

Navigation