Skip to main content
Log in

Influence of Growth Regulators and Different Spectra of Monochromatic Radiation on the Growth and Biosynthetic Characteristics of Callus Culture of Ipomoea batatas (L.) Lam.

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The work studied the influence of plant growth regulators as well as the effect of monochromatic radiation of different spectral composition on the growth and accumulation of secondary metabolites in the callus culture of sweet potato (Ipomoea batatas L.). It was found that auxin analogues in low concentrations (0.5 mg/L) significantly stimulated the growth of cell biomass, while the effect of 4-chlorophenoxyacetic acid (4-CPA) was more pronounced (stimulation 16 times) than that of 2,4-dichlorophenoxyacetic acid (2,4-D) (13.5 times stimulation). Both the increase in the concentration of 2,4-D and 4-CPA in the medium and the addition of cytokinin, 6-benzylaminopurine (BAP), led to a significant inhibition of culture growth (up to three times). In contrast to 2,4-D, the addition of 4-CPA led to an eightfold increase in the total content of polyphenolic compounds in cultured cells. Activating effect of 4-CPA on the biosynthetic characteristics of I. batatas cell culture persisted even with the addition of BAP, while an increase in the concentration of 4‑CPA led to the leveling of the activating effect. Monochromatic radiation—white, red (660 and 630 nm), yellow, green, and blue (440 and 460 nm) light—inhibited growth (up to 1.5 times) and the total accumulation of secondary metabolites in I. batatas cells (up to 1.8 times). At the same time, the white, bright blue, and red spectra differentially activated the formation of individual compounds 3,4-dicaffeoylquinic acid and 3-feruloyl-5-caffeoylquinic acid. Thus, the authors have established that both auxin analogues and spectral radiation exhibit different effects on the growth and biosynthetic characteristics of the I. batatas calli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Nawiri, S.O., Oduor, R.O., and Jalemba, A.M., Genetic engineering of sweet potatoes (Ipomoea batatas) using isopentenyl transferase gene for enhanced drought tolerance, Asian J. Agric., 2017, vol. 1, p. 85. https://doi.org/10.13057/asianjagric/g010206

    Article  Google Scholar 

  2. Phahlane, C.J., Laurie, S.M., Shoko, T., Manhivi, V.E., and Sivakumar, D., Comparison of caffeoylquinic acids and functional properties of domestic sweet potato (Ipomoea batatas (L.) Lam.) storage roots with established overseas varieties, Foods, 2022, vol. 11, p. 1329. https://doi.org/10.3390/foods11091329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tanaka, M., Ishiguro, K., Oki, T., and Okuno, S., Functional components in sweetpotato and their genetic improvement, Breed Sci., 2017, vol. 67, p. 52. https://doi.org/10.1270/jsbbs.16125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Santana-Gálvez, J., Cisneros-Zevallos, L., and Jacobo-Velázquez, D., Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome, Molecules, 2017, vol. 22, p. 358. https://doi.org/10.3390/molecules22030358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kai, K., Shimizu, B., Mizutani, M., Watanabe, K., and Sakata, K., Accumulation of coumarins in Arabidopsis thaliana, Phytochem., 2006, vol. 67, p. 379. https://doi.org/10.1016/j.phytochem.2005.11.006

    Article  CAS  Google Scholar 

  6. Teow, C.C., Truong, V.-D., McFeeters, R.F., Thompson, R.L., Pecota, K.V., and Yencho, G.C., Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours, Food Chem., 2007, vol. 103, p. 829. https://doi.org/10.1016/j.foodchem.2006.09.033

    Article  CAS  Google Scholar 

  7. Truong, V.-D., McFeeters, R.F., Thompson, R.T., Dean, L.L., and Shofran, B., Phenolic acid content and composition in leaves and roots of common commercial sweetpotato (Ipomea batatas L.) cultivars in the United States, J. Food Sci., 2007, vol. 72, p. C343. https://doi.org/10.1111/j.1750-3841.2007.00415.x

    Article  CAS  PubMed  Google Scholar 

  8. Alam, M., Rana, Z., and Islam, S., Comparison of the proximate composition, total carotenoids and total polyphenol content of nine orange-fleshed sweet potato varieties grown in Bangladesh, Foods, 2016, vol. 5, p. 64. https://doi.org/10.3390/foods5030064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kozai, T., Kubota, C., and Ryoung Jeong, B., Environmental control for the large-scale production of plants through in vitro techniques, Plant Cell Tiss. Organ Cult., 1997, vol. 51, p. 49. https://doi.org/10.1023/A:1005809518371

    Article  Google Scholar 

  10. Wawrosch, C. and Zotchev, S.B., Production of bioactive plant secondary metabolites through in vitro technologies—status and outlook, Appl. Microbiol. Biotech., 2021, vol. 105, p. 6649. https://doi.org/10.1007/s00253-021-11539-w

    Article  CAS  Google Scholar 

  11. Thiruvengadam, M., Rekha, K., Rajakumar, G., Lee, T.-J., Kim, S.-H., and Chung, I.-M., Enhanced production of anthraquinones and phenolic compounds and biological activities in the cell suspension cultures of Polygonum multiflorum, Int. J. Mol. Sci., 2016, vol. 17, p. 1912. https://doi.org/10.3390/ijms17111912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khan, H., Khan, T., Ahmad, N., Zaman, G., Khan, T., Ahmad, W., Batool, S., Hussain, Z., Drouet, S., Hano, C., and Abbasi, B.H., Chemical elicitors-induced variation in cellular biomass, biosynthesis of secondary cell products, and antioxidant system in callus cultures of Fagonia indica, Molecules, 2021, vol. 26, p. 6340. https://doi.org/10.3390/molecules26216340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chung, I.M., Rekha, K., Rajakumar, G., and Thiruvengadam, M., Elicitation of silver nanoparticles enhanced the secondary metabolites and pharmacological activities in cell suspension cultures of bitter gourd, Biotech., 2018, vol. 8, p. 412. https://doi.org/10.1007/s13205-018-1439-0

    Article  Google Scholar 

  14. Hashim, M., Ahmad, B., Drouet, S., Hano, C., Abbasi, B.H., and Anjum, S., Comparative effects of different light sources on the production of key secondary metabolites in plants in vitro cultures, Plants, 2021, vol. 10, p. 1521. https://doi.org/10.3390/plants10081521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mipeshwaree Devi, A., Khedashwori Devi, K., Premi Devi, P., Lakshmipriyari Devi, M., and Das, S., Metabolic engineering of plant secondary metabolites: prospects and its technological challenges, Front. Plant Sci., 2023, vol. 14, p. 1171154. https://doi.org/10.3389/fpls.2023.1171154

    Article  PubMed  PubMed Central  Google Scholar 

  16. De Geyter, N., Gholami, A., Goormachtig, S., and Goossens, A., Transcriptional machineries in jasmonate-elicited plant secondary metabolism, Trends Plant Sci., 2012, vol. 17, p. 349. https://doi.org/10.1016/j.tplants.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  17. Halder, M., Sarkar, S., and Jha, S., Elicitation: a biotechnological tool for enhanced production of secondary metabolites in hairy root cultures, Eng. Life Sci., 2019, vol. 19, p. 880. https://doi.org/10.1002/elsc.201900058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanchez-Muñoz, R., Moyano, E., Khojasteh, A., Bonfill, M., Cusido, R.M., and Palazon, J., Genomic methylation in plant cell cultures: a barrier to the development of commercial long-term biofactories, Eng. Life Sci., 2019, vol. 19, p. 872. https://doi.org/10.1002/elsc.201900024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dubrovina, A.S., and Kiselev, K.V., Effect of long-term cultivation on resveratrol accumulation in a high-producing cell culture of Vitis amurensis, Acta Physiol. Plant., 2012, vol. 34, p. 1101. https://doi.org/10.1007/s11738-011-0907-5

    Article  CAS  Google Scholar 

  20. Veremeichik, G.N., Bulgakov, V.P., Shkryl, Y.N., Silantieva, S.A., Makhazen, D.S., Tchernoded, G.K., Mischenko, N.P., Fedoreyev, S.A., and Vasileva, E.A., Activation of anthraquinone biosynthesis in long-cultured callus culture of Rubia cordifolia transformed with the rolA plant oncogene, J. Biotech., 2019, vol. 306, p. 38. https://doi.org/10.1016/j.jbiotec.2019.09.007

    Article  CAS  Google Scholar 

  21. Vasyutkina, E.A., Yugay, Y.A., Grigorchuk, V.P., Grishchenko, O.V., Sorokina, M.R., Yaroshenko, Y.L., Kudinova, O.D., Stepochkina, V.D., Bulgakov, V.P., and Shkryl, Y.N., Effect of stress signals and Ib-rolB/C overexpression on secondary metabolite biosynthesis in cell cultures of Ipomoea batatas, Int. J. Mol. Sci., 2022, vol. 23, p. 15100. https://doi.org/10.3390/ijms232315100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bantis, F., Smirnakou, S., Ouzounis, T., Koukounaras, A., Ntagkas, N., and Radoglou, K., Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs), Sci. Hortic., 2018, vol. 235, p. 437. https://doi.org/10.1016/j.scienta.2018.02.058

    Article  CAS  Google Scholar 

  23. Bajwa, M.N., Khanum, M., Zaman, G., Ullah, M.A., Farooq, U., Waqas, M., Ahmad, N., Hano, C., and Abbasi, B.H., Effect of wide-spectrum monochromatic lights on growth, phytochemistry, nutraceuticals, and antioxidant potential of in vitro callus cultures of Moringa oleifera, Molecules, 2023, vol. 28, p. 1497. https://doi.org/10.3390/molecules28031497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Szopa, A. and Ekiert, H., The importance of applied light quality on the production of lignans and phenolic acids in Schisandra chinensis (Turcz.) Baill. cultures in vitro, Plant Cell Tiss. Organ Cult., 2016, vol. 127, p. 115. https://doi.org/10.1007/s11240-016-1034-1

    Article  CAS  Google Scholar 

  25. Lian, T.T., Cha, S.-Y., Moe, M.M., Kim, Y.J., and Bang, K.S., Effects of different colored LEDs on the enhancement of biologically active ingredients in callus cultures of Gynura procumbens (Lour.) Merr., Molecules, 2019, vol. 24, p. 4336. https://doi.org/10.3390/molecules24234336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adil, M., Haider Abbasi, B., and Ul Haq, I., Red light controlled callus morphogenetic patterns and secondary metabolites production in Withania somnifera L., Biotechnol. Rep. (Amst)., 2019, vol. 24, p. e00380. https://doi.org/10.1016/j.btre.2019.e00380

    Article  PubMed  Google Scholar 

  27. Pesyak, S.V., The effect of selective light on the growth of plant cell cultures of Artemisia annua L., Vest. Tomsk. gos. univ. Biol., 2010, vol. 2, p. 29.

    Google Scholar 

  28. Murashige, T. and Skoog, F.A., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant, 1962, vol. 15, p. 473.

    Article  CAS  Google Scholar 

  29. Grishchenko, O.V., Subbotin, E.P., Gafitskaya, I.V., Vereshchagina, Y.V., Burkovskaya, E.V., Khrolenko, Y.A., Grigorchuk, V.P., Nakonechnaya, O.V., Bulgakov, V.P., and Kulchin, Y.N., Growth of micropropagated Solanum tuberosum L. plantlets under artificial solar spectrum and different mono- and polychromatic LED lights, Hortic. Plant J., 2022, vol. 8, p. 205. https://doi.org/10.1016/j.hpj.2021.04.007

    Article  CAS  Google Scholar 

  30. Yue, W., Ming, Q.L., Lin, B., Rahman, K., Zheng, C.J., Han, T., and Qin, L.P., Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites, Crit. Rev. Biotechnol., 2016, vol. 36, p. 215. https://doi.org/10.3109/07388551.2014.923986

    Article  CAS  PubMed  Google Scholar 

  31. Kalashnikova, E.A., Kirakosyan, R.N., Abubakarov, Kh.G., and Zaitseva, S.M., The influence of the hormonal composition of the nutrient medium and endogenous polyphenols on the formation of callus tissue of Ipomoea batatas (L.), Vopr. biol., med., farm. khim., 2022, vol. 11, p. 46.

  32. De Silva, A.E., Kadir, M.A., Aziz, M.A., and Kadzimin, S., Proliferation potential of 18-month-old callus of Ananas comosus L. cv. Moris., Sci. World J., 2006, vol. 6, p. 169. https://doi.org/10.1100/tsw.2006.34

    Article  CAS  Google Scholar 

  33. Peeters, A.J., Gerards, W., Barendse, G.W., and Wullems, G.J., In vitro flower bud formation in tobacco: interaction of hormones, Plant Physiol., 1991, vol. 97, p. 402. https://doi.org/10.1104/PP.97.1.402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Klerk, G.J., Brugge, J.T., and Marinova, S., Effectiveness of indoleacetic acid, indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus ‘Jork 9’, Plant Cell Tiss. Organ Cult., 1997, vol. 49, p. 39. https://doi.org/10.1023/A:1005850222973

    Article  CAS  Google Scholar 

  35. Grishchenko, O.V., Grigorchuk, V.P., Tchernoded, G.K., Koren, O.G., and Bulgakov, V.P., Callus culture of Scorzonera radiata as a new, highly productive and stable source of caffeoylquinic acids, Molecules, 2022, vol. 27, p. 7989. https://doi.org/10.3390/molecules27227989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vereshchagina, Y.V., Bulgakov, V.P., Grigorchuk, V.P., Rybin, V.G., Veremeichik, G.N., Tchernoded, G.K., Gorpenchenko, T.Y., Koren, O.G., Phan, N.H.T., Minh, N.T., Chau, L.T., and Zhuravlev, Y.N., The rolC gene increases caffeoylquinic acid production in transformed artichoke cells, Appl. Microbiol. Biotechnol., 2014, vol. 98, p. 7773. https://doi.org/10.1007/s00253-014-5869-2

    Article  CAS  PubMed  Google Scholar 

  37. Tomilova, S.V., Khandy, M.T., Kochkin, D.V., Galishev, B.A., Klyushin, A.G., and Nosov, A.M., Effect of synthetic auxin analogues - 2,4-D and α-NAA – on the growth and biosynthetic characteristics of suspension cell culture of Tribulus terrestris L., Rus. J. Plant. Phys., 2020, vol. 67, p. 389. https://doi.org/10.31857/S001533032004017X

    Article  Google Scholar 

  38. Khan, T., Ullah, M.A., Garros, L., Hano, C., and Abbasi, B.H., Synergistic effects of melatonin and distinct spectral lights for enhanced production of anti-cancerous compounds in callus cultures of Fagonia indica, J. Photochem. Photobiol. B., 2019, vol. 190, p. 163. https://doi.org/10.1016/j.jphotobiol.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  39. Han, J., Miyamae, Y., Shigemori, H., and Isoda, H., Neuroprotective effect of 3,5-di-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1, Neurosci., 2010, vol. 169, p. 1039. https://doi.org/10.1016/j.neuroscience.2010.05.049

    Article  CAS  Google Scholar 

  40. Matthews, D.G., Caruso, M., Alcazar, Magana, A., Wright, K.M., Maier, C.S., Stevens, J.F., Gray, N.E., Quinn, J.F., and Soumyanath, A., Caffeoylquinic acids in Centella asiatica reverse cognitive deficits in male 5XFAD alzheimer’s disease model mice, Nutrients, 2020, vol. 12, p. 3488. https://doi.org/10.3390/nu12113488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using the equipment of the Joint-Use Center “Biotechnology and Genetic Engineering” of the Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences.

Funding

This research was supported by the Russian Science Foundation (no. 22-24-00082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Yugay.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: 4-CPA—4-chlorophenoxyacetic acid; 2,4-D—2,4-dichlorophenoxyacetic acid; BAP—6-benzylaminopurine; CGA—chlorogenic acid; 3,4-, 3,5- and 4,5-di-CQA—3,4-, 3,5- and 4,5-dicaffeoylquinic acids, respectively; 3-C-5-CQA—3-caffeoyl-5-coumaroylquinic acid; 3-F-5-CQA—3-feruloyl-5-caffeoylquinic acid; 3-C-5-FQA—3-caffeoyl-5-feruloylquinic acid.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yugay, Y.A., Grishchenko, O.V., Vasyutkina, E.A. et al. Influence of Growth Regulators and Different Spectra of Monochromatic Radiation on the Growth and Biosynthetic Characteristics of Callus Culture of Ipomoea batatas (L.) Lam.. Russ J Plant Physiol 70, 181 (2023). https://doi.org/10.1134/S1021443723603105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723603105

Keywords:

Navigation